Use the form of the definition of the integral given in the theorem to evaluate the integral.

$$\int_{1}^{8} (x^2 - 4x + 7) \ dx$$

> 280/3

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{i=1}^{n} f(x_{i}) \Delta x$$

$$\Delta x = \frac{b-a}{n}, \quad x_{i} = a + i \Delta x$$

$$\lim_{N \to \infty} \sum_{i=1}^{n} \left((x_i)^2 - 4x_i + 7 \right) \frac{g-1}{n}, \quad x_i = 1 + \frac{7i}{n}$$

$$\lim_{n\to\infty} \sum_{i=1}^{n} \left(\frac{1+\frac{7i}{n}}{n} \right)^{2} - 4\left(\frac{7i}{n} \right) + 7 \right) \frac{6-1}{n}, \quad X_{i} = 1 + \frac{7i}{n}$$

$$\lim_{n\to\infty} \sum_{i=1}^{n} \left(\frac{1+\frac{14i}{n}}{n} + \frac{49i^{2}}{n^{2}} \right) - 4 - \frac{28i}{n} + 7 \right) \frac{7}{n}$$

$$\lim_{n\to\infty} \left\{ \frac{7}{n} \sum_{i=1}^{n} \left(4 - \frac{14i}{n} + \frac{49i^{2}}{n^{2}} \right) \right\}$$

$$\lim_{n\to\infty} \left\{ \frac{7}{n} \left(4 \sum_{i=1}^{n} 1 - \frac{14}{n} \sum_{i=1}^{n} i + \frac{49}{n^{2}} \sum_{i=1}^{n} i^{2} \right) \right\}$$

$$\lim_{n\to\infty} \left\{ \frac{7}{n} \left(4 \sum_{i=1}^{n} 1 - \frac{14}{n} \sum_{i=1}^{n} i + \frac{49}{n^{2}} \sum_{i=1}^{n} i^{2} \right) \right\}$$

$$\lim_{n \to \infty} \left\{ \frac{26}{n} \sum_{i=1}^{n} \frac{1}{n^2} - \frac{7.49}{n^2} \sum_{i=1}^{n} \frac{1}{i^2} + \frac{7.49}{n^3} \sum_{i=1}^{n} \frac{1}{i^2} \right\}$$

$$\lim_{n\to\infty} \left\{ \frac{28}{n} \cdot n - \frac{7^2 \cdot 2}{n^2} \frac{n \ln 1}{2} + \frac{7^3}{n^3} \frac{n \ln 1 \ln 1}{6} \right\}$$
See Nodes

$$\lim_{n \to \infty} \left[28 - \frac{\cancel{2} \cdot 7^2}{n^2} \frac{n^2 + n}{\cancel{2}} + \frac{7^3}{n^3} \frac{2^3 + 3^2 + n}{6} \right]$$

$$\lim_{n\to\infty} \left[28 - 7^2 \left(\frac{n^2}{n^2} + \frac{n}{n^2} \right) + \frac{7^3}{6} \left(\frac{2n^3}{n^3} + \frac{3n^2}{n^3} + \frac{n}{n^3} \right) \right]$$

$$= \left(\frac{1}{1} + 0 \right) \qquad \qquad 2 \qquad 0 \qquad 0$$

$$= 28 - 7^2 \qquad \qquad + \frac{7^3}{6} \left(2 \right)$$

$$28 - 49 + \frac{7^{3}}{3} = 13\frac{1}{3}$$
 on $\frac{280}{3}$

\$6.1 Invense Functions

I. PRECALCULUS

- · one to one functions
- · Horrzowar Lust 1651
- · INVERSE FUNCTIONS
- · GRAPHS

TT CALCULUS

· INVERSE FUNCTION THEOREM

1 Definition A function f is called a **one-to-one function** if it never takes on the same value twice; that is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

DIFFERENT INPUS PRODUCE DIFFERENT OFFICES.

IF THE CUIRIS ARE EQUAL, THEN THE WOULS ARE EQUAL.

SANE THIOG

$$ex$$
. $f(x) = 3 + 4x$ is 1:1

But
$$f(x) = x^2 + 2x + 3$$
 is not 1:1

IF
$$f(a) = f(b)$$
 / SHOW $a = b$?

Note:
$$f(x) = (x+1)^2 + 2$$

Confliction
$$x^2 + 2x + 1 + 2$$

The SQ.

$$(a+1)^{2} + 2 = (b+1)^{2} + 2$$

$$(a+1)^{2} = (b+1)^{2}$$

$$a+1 = \frac{1}{2}(b+1)$$

$$a = -1 = \frac{1}{2}(b+1) = \begin{cases} b \\ -2-b \end{cases}$$
The same of extension b and $a = \frac{1}{2}(b+1) = \frac{1}{2}(b+1)$

a à b cau se offerent. I 11 not 1:1.

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.

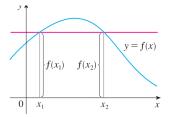


FIGURE 2 This function is not one-to-one because $f(x_1) = f(x_2)$.

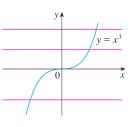


FIGURE 3 $f(x) = x^3$ is one-to-one.

2 Definition Let f be a one-to-one function with domain A and range B. Then its **inverse function** f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \iff f(x) = y$$

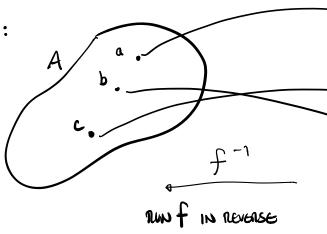
for any y in B.

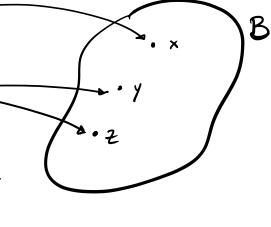
$$f'(x)$$
 "f. hovense"
$$f'(x) \neq f(x)^{-1} = \frac{1}{f(x)}$$

Sc1 DIAGRAM:

$$f(x) = x$$

 $f'(x) = a$





 $f^{-1}(f(x)) = x$ for every x in A $f(f^{-1}(x)) = x$ for every x in B

$$A = Dan(f) \ni \times \int_{f^{-1}}^{f(x)} f(x)$$

INVERSE FUNCTIONS COMPOSED

CANCEL

$$f^{-1}(x)$$
 $\times \in Donlf^{-1}) = B$

17. Assume that f is a one-to-one function.

(a) If f(6) = 17, what is $f^{-1}(17)$?

(b) If $f^{-1}(3) = 2$, what is f(2)?

18. If
$$f(x) = x^5 + x^3 + x$$
, find $f^{-1}(3)$ and $f(f^{-1}(2))$.

19. If $h(x) = x + \sqrt{x}$, find $h^{-1}(6)$.

17 (a)
$$f(6) = 17$$

 $f'(f(6)) = f''(17)$
 $6 = f''(17)$

$oxed{5}$ How to Find the Inverse Function of a One-to-One Function f

STEP 1 Write y = f(x).

STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3 To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y = f^{-1}(x)$. 23-28 Find a formula for the inverse of the function.

23.
$$f(x) = 5 - 4x$$

24. $f(x) = \frac{4x-1}{2x+3}$

25.
$$f(x) = 1 + \sqrt{2 + 3x}$$

26. $y = x^2 - x, \ x \ge \frac{1}{2}$

27.
$$y = \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$

28. $f(x) = 2x^2 - 8x, x \ge 2$

25. FIND f-1(x) WHEN f(x) = 1+ \(\frac{1}{2} + 3x\)

(1)
$$y-1 = \sqrt{2+3}x$$

 $(y-1)^2 = 2+3x$

$$x = \frac{(y-1)^2-2}{3}$$

$$y = \frac{(x-1)^2 - 2}{3} = x^2$$

$$f^{-1}(x) = \frac{(x-1)^2-2}{3}$$

Note:
$$f(x) = 1 + \sqrt{2+3x}$$

$$f^{-1}(x) = \frac{(x-1)^2 - 2}{3}$$

(1) SUB 1

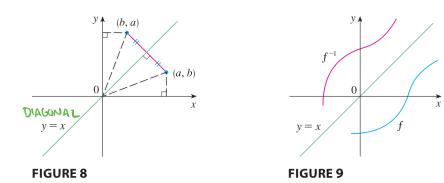
2 SQUARE

(3) SUB 2

TIE A KNOT

UNTILE A FOCT

The principle of interchanging x and y to find the inverse function also gives us the method for obtaining the graph of f^{-1} from the graph of f. Since f(a) = b if and only if $f^{-1}(b) = a$, the point (a, b) is on the graph of f if and only if the point (b, a) is on the graph of f^{-1} . But we get the point (b, a) from (a, b) by reflecting about the line y = x. (See Figure 8.)



Therefore, as illustrated by Figure 9:

The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

$$f(a) = b$$

$$(a,b) \text{ is one Graph}$$

$$y = f(x)$$

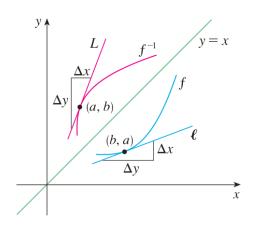
$$f^{-1}(b) = a$$

$$(b,a) \text{ is one Graph}$$

$$y = f^{-1}(x)$$

- **6** Theorem If f is a one-to-one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.
- **Theorem** If f is a one-to-one differentiable function with inverse function f^{-1} and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

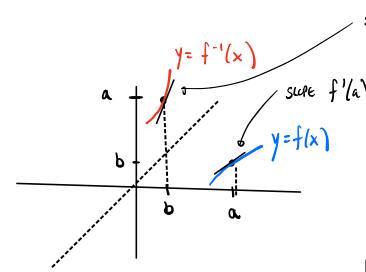
$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$



Let
$$f(a)=b \iff a=f^{-1}(b)$$

$$(f^{-1})'(b)=\frac{1}{f'(a)}$$

$$f$$
 nucl \Rightarrow f^{-1} nucl f deca \Rightarrow f^{-1} deca.



$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

I.F.T.
$$(f'')'(x) = \frac{1}{f'(f''(x))}$$

PROOF USING IMPLIENT DIFFERENTIATION:

Where
$$y = f'(x)$$
. Find y' .

If the proof of the proof

39.
$$f(x) = 3x^3 + 4x^2 + 6x + 5$$
, $a = 5$

40.
$$f(x) = x^3 + 3\sin x + 2\cos x$$
, $a = 2$

41.
$$f(x) = 3 + x^2 + \tan(\pi x/2), -1 < x < 1, a = 3$$

42.
$$f(x) = \sqrt{x^3 + 4x + 4}$$
, $a = 3$

43. Suppose f^{-1} is the inverse function of a differentiable function f and f(4) = 5, $f'(4) = \frac{2}{3}$. Find $(f^{-1})'(5)$.

44. If g is an increasing function such that g(2) = 8 and g'(2) = 5, calculate $(g^{-1})'(8)$.

45. If
$$f(x) = \int_{2}^{x} \sqrt{1 + t^{3}} dt$$
, find $(f^{-1})'(0)$.

7 Theorem If
$$f$$
 is a one-to-one differentiable function with inverse function f^{-1} and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

39.
$$(f^{-1})'(5) = \frac{1}{f'(f^{-1}(5))}$$

$$f^{-1}(5) = 0$$
 $(f(0) = 5)^{W=0}$

$$(f^{-1})'(5) = \frac{1}{f'(f^{-1}(5))}$$

$$\frac{1}{6}$$

43. Suppose f^{-1} is the inverse function of a differentiable function f and f(4) = 5, $f'(4) = \frac{2}{3}$. Find $(f^{-1})'(5)$.

44. If g is an increasing function such that g(2) = 8 and g'(2) = 5, calculate $(g^{-1})'(8)$.

45. If
$$f(x) = \int_3^x \sqrt{1 + t^3} dt$$
, find $(f^{-1})'(0)$.

43.
$$(f^{-1})'(5) = \frac{1}{f'(f^{-1}(5))}$$

$$\left(\frac{3}{2}\right)$$

45.
$$(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))}$$

$$f'(x) = \sqrt{1+x^3}$$

$$f(w) = \int_{1+t^3}^{w} dt = 0$$

$$\int_{\alpha}^{a} f(x) dx = 0$$

$$(f^{-1})'(0) = \frac{1}{f'(f''(0))} = \frac{1}{f'(3)} = \frac{1}{\sqrt{1+3^3}}$$