Use the form of the definition of the integral given in the theorem to evaluate the integral.
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Definition A function f is called a one-to-one function if it never takes on
the same value twice; that is,

flxr) # f(x2) whenever x; # x;
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intersects its graph more than once.

Horizontal Line Test A function is one-to-one if and only if no horizontal line /
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This function is not one-to-one
‘D\v’? - CUQ‘\'D = 'DFF . 7. CCULD. because f(x1) = f(x). f(x) = x* is one-to-one.
@ Definition Let f be a one-to-one function with domain A and range B. Then i
its inverse function ' has domain B and range A and is defined by A100D ¢ i '( ; "
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17. Assume that f is a one-to-one function.
(a) If f(6) = 17, whatis £~ '(17)?
(b) If £ 7'(3) = 2, what is £(2)?

18. If f(x) = x° + x* + x, find £ '(3) and f(f'(2)).

19. If h(x) = x + +/x, find 1 '(6).
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How to Find the Inverse Function of a One-to-One Function f
STEP1 Write y = f(x).
STEP 2 Solve this equation for x in terms of y (if possible).

STEP3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = £~ '(x).
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15.

Fy= 1+ «J'Lh’px
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23-28 Find a formula for the inverse of the function.
4x — 1
2x + 3
26. y = x> —x, x?%

23 f(x) =5 — 4x 24, f(x) =

25. f(x) =1+ 2 + 3x

1—Vx
1+ x

27. y = 28. f(x) =2x*—8x, x=2
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The principle of interchanging x and y to find the inverse function also gives us the
method for obtaining the graph of f~' from the graph of f. Since f(a) = b if and only
if f7'(b) = a, the point (a, b) is on the graph of f if and only if the point (b, a) is on the
graph of £ '. But we get the point (b, a) from (a, b) by reflecting about the line y = x.
(See Figure 8.)
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Therefore, as illustrated by Figure 9:

The graph of f~' is obtained by reflecting the graph of f about the line y = x. J
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@ Theorem If f is a one-to-one continuous function defined on an interval, y
then its inverse function f ' is also continuous.

Theorem If f is a one-to-one differentiable function with inverse function
f'and f'(f "(a)) # 0, then the inverse function is differentiable at a and

1
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f(f @)
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39-42 Find (f7')(a).

39
40
41
42

43.

cf(x)=3*+4x*+6x+5, a=5

. f(x) =x*+ 3sinx +2cosx, a=2

Theorem If f is a one-to-one differentiable function with inverse function
£ "and f'(f '(a)) # 0, then the inverse function is differentiable at a and

. f(x) =34+ x*+ tan(mx/2), —1<x<1, a=3

) =T T AT, a=3

tion f and f(4) = 5, f'(4) = 2 Find (f7)(5).

44. 1f g is an increasing function such that g(2) = 8 and

45

g'(2) = 5, calculate (g7")'(8).
D f(x) = [}\/1 ¥ 13 dr, find (£71)(0).
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Suppose f ' is the inverse function of a differentiable func-

& FYV: 9K vBx + b
& =5
Sw 4 Yo i bw 5 = 5

() 7“(6\ = w

W= 0
FY=0 [ Hoves)

(f) () - 1 (1)) ;

43. Suppose f ! is the inverse function of a differentiable func-

tion f and f(4) = 5, f'(4) = 3. Find (f7')(5).

44. If g is an increasing function such that g(2) = 8 and

g'(2) = 5, calculate (g7")'(8).
45.1f f(x) = f; JT+ 13 dt, find (f71)(0).

. (57 (5) -

(f ) =

1

1

f(f @)

‘1(0\1' vb0)x b

[\






