Quiz 2

Please put away all papers and electronic devices except for a calculator. Show enough work that it is clear how you arrived at your answer. Answers can be given as frations or decimals rounded to 4 decimal places. Box/circle your final answers. Good luck!

1. An experimaent can result in 6 possible simple events

$$S = \{E_1, E_2, E_3, E_4, E_5, E_6\}$$

with the following probabilities.

$$P(E_1) = .05, \quad P(E_2) = .10, \quad P(E_3) = .25,$$

$$P(E_4) = P(E_5) = P(E_6).$$

Suppose the events A and B are defined as follows.

$$A = \{E_1, E_3, E_4\}$$
$$B = \{E_1, E_2, E_3\}$$

(a) (4 points) Find the probability $P(E_4)$.

Since
$$P(E_1) + P(E_2) + P(E_3) + P(E_4) + P(E_5) + P(E_6) = 1$$

 $\Rightarrow .05 + .10 + .25 + 3P(E_4) = 1$

(b) (4 points) Find the probability P(B)

(c) (4 points) Find the probability $P(A \cap B)$.

$$A \cap B = \{E_1, E_3\} = \} P(A \cap B) = P(E_1) + P(E_3)$$

= .05 + .25 = [.3]

(d) (4 points) Find the probability P(A|B).

(e) (4 points) Are A and B mutually exclusive? Why or why not?

(f) (4 points) Are A and B independent? Why or why not?

- 2. Provide formulas for the following.
 - (a) (4 points) The number of ways to choose and arrange r distinct objects from a collection of n distinct objects, i.e. P_r^n .

(b) (4 points) The number of ways to choose r distinct objects from a collection of n distinct objects, i.e. \mathbb{C}^n_r .

3. (4 points) How many ways can the letters Q, W, E, R, T, and Y be ordered?

$$9_6^6 = 6! = 6.5.4.3.2.1 = 720$$

4. (4 points) How many ways are there to select 3 (different) side dishes from a restaurant that serves 6 side dishes?

$$C_3^6 = \frac{6!}{3! \, 3!} = \frac{720}{(6)(6)} = 20$$

- 5. Suppose a particular club has 20 members.
 - (a) (6 points) How many ways can the club select 4 people to work on a particular project?

$$C_{4}^{20} = \frac{20!}{4! \cdot 16!} = 4845$$

(b) (6 points) How many ways can the club elect a president, vice president, and secretary?

$$P_{3}^{20} = \frac{20!}{17!} = 20.19.18 = 6840$$

6. (8 points) How many ways are there for Noah to select 2 sheep, 2 goats, and 2 camels from a group of 5 sheep, 6 goats, and 7 camels?

CHOOSE SHEEP CHEOSE GOATS CHOOSE CAMELS
$$C_{2}^{5} \cdot C_{2}^{6} \cdot C_{2}^{7}$$

$$(10)(15)(21) = 3150$$

- 7. A drawer contains 7 new batteries and 3 dead batteries. You grab 2 of the batteries.
 - (a) (8 points) What is the probability that they are both dead?

WAYS TO SELECT 2 DEAD BAMERIES:
$$C_{2}^{3} = 3$$
WAYS TO SELECT 2 BAMERIES: $C_{2}^{10} = 45$

$$P(20EAD) = \frac{3}{45} = \sqrt{\frac{1}{15}} \approx .0667$$

teries.
$$P(1^{51} \text{ DEAD} \cap 2^{nd} \text{ DEAD}) = \frac{1}{9}$$

or $P(1^{51} \text{ DEAD}) P(2^{nd} \text{ DEAD}) 1^{51} \text{ DEAD}$
 $= (\frac{3}{10})(\frac{2}{9})$
 $= \frac{6}{90} = \frac{1}{15}$

(b) (8 points) What is the probability that at least one of the batteries is new?

THIS IS THE OPPOSITE OF THE EVENT IN PART (a).

$$= 1 - \frac{1}{15}$$

8. An experiment can result in events A, B, both A and B, or neither with the following probabilities.

$$\begin{array}{c|cccc}
 & A & A^c \\
B & .16 & .56 \\
B^c & .06 & .22
\end{array}$$

(a) (4 points) Find P(A).

(b) (6 points) Find P(A|B).

(c) (6 points) Are A and B independent? Why or why not?

No,
$$P(A) \neq P(A|B)$$
 ALSO $P(A \cap B) \neq P(A) P(B)$
 $.21 \neq .222$ (.16) $\neq (.22)(.72) = .1584$

9. (8 points) Suppose the probability that a pea plant is tall is .4, the probability that a pea plant has smooth leaves is .25, and the probability that a pea plant is neither tall nor has smooth leaves is .5. Find the probability that a pea plant is both tall and has smooth leaves.

$$P(T) = .4$$
 $P(S) = .25$
 $P(T' \cap S') = .5$

ADDITION RULE:
$$P(T \cup S) = P(T) + P(S) - P(T \cap S)$$

 $.5 = .4 + .25 - P(T \cap S)$
 $P(T \cap S) = .4 + .25 - .5 = \boxed{.15}$

