
Name:		
Math	195	Precalculus

Please show all work and **box your final answers**. Calculators are not allowed and cellphones should be put away. Good luck!

1. Determine if the following graph is the graph of a function. If it is not, explain why. If it is, explain why and find its domain and range.

2. (8 points) Given $f(x) = x^2 - 3x + 2$, rewrite $\frac{f(x+h) - f(x)}{h}$ as a simplified polynomial.

3. Find the average rate of change of the function $f(x) = \frac{2}{x+1}$ over the interval [0, h].

4. (8 points) Sketch the graph of $y = -\sqrt{x-4} + 2$.

5. (8 points) Consider the following functions.

$$f(x) = \frac{1}{x-a} + a,$$
 $g(x) = x^2 - 2x,$ $h(x) = 4x + 1$

(a) Find $(f \circ f)(x)$, i.e. f(f(x)).

(b) Find $(g \circ h)(2)$, i.e. g(h(2)).

6. (8 points) Let f be the one-to-one function defined by $f(x) = \frac{3x+2}{2x-1}$. (a) Find $f^{-1}(x)$.

(b) Find the range of f. (Hint: The range of f is equal to the domain of f^{-1} .)

- 7. This is a bonus question. You will be rewarded for a correct answer, and not penalized for an incorrect answer.
 - (a) (4 points) Suppose you start with the graph of the equation $y = \sqrt{x^3 + 1}$ and then apply the following transformations in the following order.
 - 1. Move the graph 3 units to the left.
 - 2. Reflect the graph through the *y*-axis.
 - 3. Move the graph 2 units down.

What is the equation of the resulting graph? Do not sketch the graph.

- (b) (4 points) Now suppose you start with the same graph of the same equation $y = \sqrt{x^3 + 1}$ and you apply the same transformations but in a different order.
 - 1. Reflect the graph through the y-axis.
 - 2. Move the graph 3 units to the left.
 - 3. Move the graph 2 units down.

Now what is the equation of the resulting graph? Do not sketch the graph.