| NAME | (printed | .) |      |  |
|------|----------|----|------|--|
|      |          |    |      |  |
|      |          |    |      |  |
| NAME | (signed) |    | <br> |  |

## MATH 203 Final Exam

December 22, 2014

Circle your section (for example, XX, Instructor, Days, Hours):

BB, Shell, M, W-9-10:40 DD, Shell, W 11-12:40

EE, Islam, M, W, 2-3:40

LL, Adamski, T, Th 9-10:40

LM, Jitsukawa, T, Th, 10-11:40 MM, Kapsack, T, F, 11-12:40 PP, Musser, T, Th, 2-3:40 RS, Bam, T, Th 4-5:40

| Problem | Points                                  |  |  |
|---------|-----------------------------------------|--|--|
| 1 .     |                                         |  |  |
| 2       |                                         |  |  |
| 3       |                                         |  |  |
| 4       |                                         |  |  |
| 5       |                                         |  |  |
| 6       | ego e e e e e e e e e e e e e e e e e e |  |  |
| 7       |                                         |  |  |
| 8       |                                         |  |  |
| 9       |                                         |  |  |
| 10      |                                         |  |  |
| 11      |                                         |  |  |
| 12      |                                         |  |  |
| Total   |                                         |  |  |

Instructions: Complete every question in Part I (Questions 1-7), and answer THREE (3) COMPLETE questions from Part II (Questions 8-12). In the table above mark an X through the two questions that you omit. Show all work.

No calculators or other electric devices may be used. Answers are to be left in terms of  $\sqrt{7}$ ,  $\pi$ ,  $\ln 3$ , etc. when these can not be simplified. You have 2 hours and 15 minutes to complete the exam.

PART I: Answer ALL questions in this part (10 points each)
Show all work and simplify all answers. NO ELECTRONIC DEVICES!!!

- 1. (a) Find an equation for the plane that contains the x-axis and the point (5,2,3).
  - (b) Find parametric equations for the line through (1,1,1) and (1,2,3).
  - (c) Are the plane found in (a) and the line found in (b) parallel? Show work.

- 2. The concentration of polutant in a thin film of poluted water at point (x,y) is  $p(x,y) = xe^{x+2y}$ .
- (a) At the point (2,-1), in which direction is the change per unit travelled of the concentration p(x,y) decreasing the most rapidly?
- (b) An ant crawling through the film is at position  $(x,y) = (t^2 + t, t^3 2t)$  at time t. At what rate is the concentration at the ant's position changing per unit time at time t = 1?
- (c) What is the rate of change in the concentration per unit distance travelled at the point (4,-2) travelling towards the point (3,3)?

3. Find all local maxima, local minima and saddle points of the graph of  $f(x,y)=2x^4-x^2+3y^2+6y$ .

- 4. (a) Find the volume of the region in the first octant bounded by x = 0, y = 0, x + y = 2, z = x + 3, z = y + 5.
- (b) Find an equation of the tangent plane to the graph of  $z = \ln(e^x + e^{2y-4})$  at the point on the graph for which (x, y) = (0, 2).

5. Find the mass of a lamina with density  $\delta(x,y)=\frac{1+\sqrt{x^2+y^2}}{x^2+y^2}$  which occupies the the portion of the annular ring  $\{(x,y):1\leq x^2+y^2\leq 4\}$  in the first quadrant.

6. State, for each series, whether it converges absolutely, converges conditionally or diverges. Name a test which supports each conclusion and show the work to apply the test.

(a)  $\sum_{n=1}^{\infty} \frac{(-1)^n (2^n)}{n+2^n}$ 

(b)  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+2^n}$ 

 $(c) \sum_{n=1}^{\infty} \frac{(-1)^n}{n+2}$ 

7. Find the interval of convergence of the series  $\sum_{n=0}^{\infty} \frac{(x+1)^n}{3^n \ln (n+2)}$ . (Remember to check the endpoints, if applicable.)

## PART II: Answer any THREE COMPLETE questions (10 points each).

- 8. (a) Find the volume of the region inside the sphere  $x^2 + y^2 + z^2 = 3$  and above the cone  $z = -\sqrt{x^2 + y^2}$ .
  - (b) Find the following limits or show they do not exist:

(i) 
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy}}{x^2+2y^2}$$
 (ii)  $\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy}}{4+x^2+2y^2}$ 

9. (a) Use differentials (linear approximation) to approximate the volume of a  $(2.98~\text{cm})\times(3.01~\text{cm})\times(4.02~\text{cm})$  rectangular box.

(b) Find an equation of the tangent plane to the graph of  $\cos(x+2y+3z)=x+2y-e^{4z}$ 

at the point (2,-1,0).

- 10. (a) Find the area of the portion of the surface z=xy+1 which is inside the cylinder  $x^2+y^2=3$ 
  - (b) Graph, labelling the coordinates of any vertices:  $x^2 y^2 4y + z^2 = 4$ .

11. Find the mass of the solid bounded by the surfaces  $x^2 + y^2 = 4$ ,  $z = x^2 + y^2 + 1$  and z = 0 and having density  $\delta(x, y, z) = \sqrt{z}$ .

- 12. (a) Find the first four nonzero terms of the Maclaurin series (i.e., the power series centered at zero) representation of the function  $f(x) = e^{-x^2/2}$ .

  (b) Find the value  $\int_0^1 f(x) dx$ , accurate to the nearest hundredth. Justify that your answer has the required accuracy.