| Name:                 | 11/16/2017 |
|-----------------------|------------|
| Math 203 Calculus III | Exam 2     |

1. (10 points) Let  $f(x,y) = x \sin(x+y)$ . Explain why f is differentiable at the point (-1,1). Then find an equation for the tangent plane to the graph z = f(x,y) at the point (-1,1,0).

 $2.\ (8\ \mathrm{points})\ \mathrm{Find}$  all local maxima, local minima, and saddle points for

$$f(x,y) = 3x^2 - 12xy + 8y^3.$$

3. (12 points) At points (x, y, z) in a region of space for which  $x^2 + y^2 \ge 1$  and  $z \ge 0$ , there is an electric charge

$$E(x, y, z) = z + z \ln(x^2 + y^2).$$

- (a) Find the direction of greatest increase in E at (1,0,2).
- (b) Find the rate at which the electric charge is changing at (1,0,2) in the direction towards the point (4,4,7).

(c) At each point (s,t) on the ground in a physics lab, the electric charge is measured at the corresponding point with the following coordinates.

$$x = s + t$$
  $y = s - t$   $z = 2st$ 

Find the rate  $\frac{\partial E}{\partial s}$  at which the electric charge is changing with respect to s at the point (s,t)=(1,1).

4. (10 points) A laminar region  $\mathcal{R}$  lies in the first quadrant, includes the origin, and is bounded by the following curves.

$$y = 2x \qquad y = 1 \qquad y = x^3$$

The density  $\delta$  of the laminar at the point (x,y) is given by  $\delta(x,y)=24x^2$ . Sketch the region  $\mathcal{R}$  and compute its mass.

| 5. | (10 points) Find the volume of the solid that lies below the paraboloid $z = 18 - 2x^2 - 2y^2$ and above the $xy$ -plane. |
|----|---------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                           |
|    |                                                                                                                           |
|    |                                                                                                                           |
|    |                                                                                                                           |
|    |                                                                                                                           |
|    |                                                                                                                           |
|    |                                                                                                                           |
|    |                                                                                                                           |