1. Find the derivative of the following functions.

4 (a)
$$F(x) = (3x^2 + 2x)^4 \ln(5x - \frac{1}{x})$$

$$F'(x) = 4(3x^2 + 2x)^3(6x + 2) \ln(5x - \frac{1}{x}) + (3x^2 + 2x)^4 \frac{1}{5x - \frac{1}{x}} (5 + \frac{1}{x^2})$$

4 (b)
$$G(x) = \frac{e^{7x^2 - x}}{\sqrt{x^2 + 5}}$$

$$G'(x) = \frac{e^{2x^2-x} (Hx-1) \sqrt{x^2+5} - e^{2x^2-x} \cdot \frac{1}{2} (x^2+5)^{\frac{1}{2}} (2x)}{e^{2x^2-x}}$$

$$\frac{e^{\frac{1}{4}x^{5}+\frac{1}{4}x^{5}+\frac{1}{4}(x^{2}+5)^{-\frac{1}{2}}\left(\frac{1}{4}x^{-1}\right)\left(x^{2}+5\right)-x}{\left(x^{2}+5\right)^{-\frac{1}{2}}\left(\frac{1}{4}x^{-1}\right)\left(x^{2}+5\right)-x} = \frac{e^{\frac{1}{4}x^{2}-x}\left(\frac{3}{4}x^{2}+\frac{1}$$

4 (c)
$$H(x) = \sqrt[3]{\frac{x^2 - 3x}{x^4 + 6x}}$$

H'(x) =
$$\frac{1}{3} \left(\frac{x^2 - 3x}{x^4 + 6x} \right)^{-\frac{2}{3}} \cdot \frac{(2x - 3)(x^4 + 6x) - (x^2 - 3x)(4x^3 + 6)}{(x^4 + 6x)^2}$$

$$=\frac{1}{3}\left[\frac{\times (x^{3}+6)}{\times (x-3)}\right]^{1/3} = \frac{-7x^{5}+9x^{4}+6x^{2}}{x^{2}(x^{3}+6)^{2}} = \frac{-2x^{3}+9x^{2}+6}{3(x-3)^{4/3}(x^{3}+6)^{4/3}}$$

8 2. Give an equation for the tangent line to the curve

$$2(x^2 + y^2)^2 = 25(x^2 - y^2)$$

at the point (3,1).

$$4(x^{2} + y^{2})(2x + 2y \frac{dy}{dx}) = 25(2x - 2y \frac{dy}{dx})$$

$$8x^{3} + 8x^{2}y \frac{dy}{dx} + 8xy^{2} + 8y^{3} \frac{dy}{dx} = 50x - 50y \frac{dy}{dx}$$

$$8x^{2}y \frac{dy}{dx} + 8y^{3} \frac{dy}{dx} + 50y \frac{dy}{dx} = 50x - 8x^{3} - 8xy^{2}$$

$$\frac{dy}{dx} = \frac{50x - 8x^{3} - 8xy^{2}}{8x^{2}y + 8y^{3} + 50y} \frac{Ax}{(3,1)} = \frac{-90}{130} \qquad \therefore y - 1 = -\frac{9}{13}(x - 3)$$

$$0R y = -\frac{9}{13}x + \frac{40}{13}$$

- 3. Suppose you deposit \$600 into a savings account with an annual interest rate of 3.25% that is compounded monthly.
- 4 (a) How much will your savings be worth after 5 years?

$$A(t) = 600 \left(1 + \frac{.0325}{12}\right)^{12}$$

$$A(5) = 600 \left(1 + \frac{.0325}{12}\right)^{60}$$

$$2 = 705.71$$

4 (b) How long will it take your savings to double?

$$A(t) = 600 \left(1 + \frac{.0325}{12}\right)^{12t} = 1200$$

$$\left(1 + \frac{.0325}{12}\right)^{12t} = 2$$

$$12t \ln\left(1 + \frac{.0325}{12}\right) = \ln 2$$

$$t = \frac{\ln 2}{12 \ln \left(1 + \frac{.0325}{12}\right)}$$

$$\frac{21.36 \text{ Years}}{12}$$

4. Suppose a population of bacteria triples every 7 hours. If the population at 5pm is 3200, what was the population at noon (5 hours earlier)?

$$P(t) = P_{0} \cdot 3^{t/4}$$

5. Suppose a sample of radioactive material is observed to decay to 84% of its original mass after 35 years. Find the half-life of this material.

$$M(t) = M_0 (.84) = \frac{1}{2} M_0$$

$$\frac{t}{35} \ln(.84) = \ln(\frac{1}{2})$$

$$t = \frac{35 \ln(\frac{1}{2})}{\ln(.84)} \approx 139.14 \text{ Years}$$

$$M(35) = M_0 e^{35k} = .84 M_0$$

$$35k = Ln.84$$

$$k = \frac{1}{35} Ln.84 Page 3$$

6. A baseball diamond is a square with side 90 ft. A batter hits the ball and runs toward first base with a speed of 24 ft/s. At what rate is her distance from second base decreasing when she is halfway to first base?

$$\frac{dx}{dt} = -24 \text{ ft/s}$$

$$2x \frac{dx}{dt} = 2z \frac{dz}{dt}$$

$$\frac{dt}{dt} = \frac{x \frac{dx}{dt}}{dt}$$

$$\frac{dz}{dt} = \frac{45(-24)}{45\sqrt{5}} = \frac{-24}{\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{$$

7. Water is being pumped into an inverted conical tank at a constant rate. The tank has height 6 m and the diameter at the top is 4 m. If the water level is rising at a rate of 0.2 m/min when the height of the water is 2 m, find the rate at which water is being pumped into the tank.

$$\frac{\Gamma}{h} = \frac{2}{6} = \gamma \quad r = \frac{1}{3}h$$

$$V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \left(\frac{1}{3} h \right)^2 h = \frac{\pi}{27} h^3$$

$$\frac{dV}{dt} = \frac{\hat{\eta}}{\hat{q}} h^2 \frac{dh}{dt}$$

$$\frac{dV}{dt} = \frac{\pi}{9} \left(2 \right)^{2} \left(.2 \right) = \boxed{\frac{4\pi}{45}} \approx .279 \text{ m/min}$$

Page 4

4 8. Find the critical numbers for the function $f(x) = x^{4/5}(x-4)^2$.

$$f'(x) = \frac{4}{5} x^{-1/5} (x-4)^{2} + x^{4/5} \cdot 2(x-4)$$

$$= x^{-1/5} (x-4) \left[\frac{4}{5} (x-4) + 2x \right] = \begin{cases} 0 & \text{on} \\ \text{undefined} \end{cases}$$

$$\text{when } x = 0 \qquad x = 4$$

$$\frac{14}{5} x - \frac{16}{5} = 0$$

$$x = \frac{8}{7}$$

$$x = 0, 4, \frac{8}{7}$$

8 9. Find the absolute maximum and minimum values of

$$f(x) = x\sqrt{4-x^2}$$
 DOMAIN [-2,2]

over the closed interval $-1 \le x \le 2$.

CRITICAL #S:
$$f'(x) = \sqrt{4-x^2}$$
 - $\frac{x^2}{\sqrt{4-x^2}}$ (UNDEFINED WHEN $x = \pm 2$)

$$f'(x) = 0 \longrightarrow \sqrt{4-x^2} = \frac{x^2}{\sqrt{4-x^2}}$$

$$4-x^2 = x^2$$

$$x^2 = 2$$

$$x = \pm \sqrt{2}$$

$$x = \pm \sqrt{2}$$
Note: $-\sqrt{2}$ is not in $[-1, 2]$

10. Let
$$f(x) = (x^2 - 1)^3$$
.

- (a) Find the intervals on which f is increasing/decreasing.
- (b) List any/all local maximums and minimums.
- (c) Find the intervals on which f is concave up/down.
- (d) List any/all inflection points for the graph y = f(x).
- (e) Use the information from parts (a)-(d) to sketch (roughly) the graph y = f(x).

(a)
$$f'(x) = 3(x^2 - 1)^2 (2x)$$

$$= 6x (x + 1)^2 (x - 1)^2 = 0$$

$$x = 0, \pm 1$$

$$(-0, -1) (-1, 0) (0, 1) (1, 0)$$

$$f' \text{ NEG } \text{ NEG } \text{ Pos } \text{ Pos}$$

$$f \text{ DECR } \text{ OECR } \text{ INCR } \text{ INCR}$$

f is increasing on $(0,1)u(1,\infty)$ f is decreasing on $(-\omega,-1)u(-1,0)$ AND f has wal Min at x=0WITH LOCAL MIN VALUE f(0)=-1

(P)

(c)
$$f''(x) = 6(x^2 - 1)^2 + 6x \cdot 2(x^2 - 1)(2x)$$

 $= 6(x^2 - 1)[(x^2 - 1) + 4x^2] = 0$
 $6(x + 1)(x - 1)(5x^2 - 1) = 0$

f 15 concave of on (-ω,-1) u(-√'5, √'5) u (1,ω) f 15 concave Down on (-1, -√'5) u (√'5, 1), AN HAS POINTS OF INFLECTION AT

 $(-1,0),(-\sqrt{1/5},-.512),$ $(\sqrt{1/5},-.512),(1,0)$