Fordham Math 1108, Math for Business: Finite

Practice Problems for Exam 2

- 1. A restaurant serves 12 side dishes 3 potato dishes, 5 vegetable dishes, and 4 pasta dishes. Customers are allowed to shoose three distinct side dishes.
 - (a) How many possible side dish combinations can one order at this restaurant?
 - (b) How many possible side dish combinations can one order at this restaurant if you have to order 1 potato dish, 1 vegetable dish, and 1 pasta dish?
 - (c) How many possible side dish combinations can one order at this restaurant if you have to order exactly two vegetable dishes?
 - (d) How many possible side dish combinations can one order at this restaurant if you have to order at least two vegetable dishes?
- 2. A club with 22 members must select a president, a vice-president, and secretary from among themselves. How many ways can they do this?
- 3. A club with 25 members 17 women and 8 men must select 5 members to attend a club fair. If they want to send 3 women and 2 men, how many possible ways can they do this?
- 4. Let

$$A = \{a, b, c, d, e, f\}, \qquad B = \{a, e, i, o, u\}$$

- (a) Find $A \cap B$.
- (b) Find $A \cup B$.
- (c) List all subsets of $A \cap B$.
- (d) How many subset of B exist?
- (e) If the universal set U is the 26-letter alphabet, how many elements are in $A' \cap B'$?
- 5. A parking lot contains 150 cars. 35 cars are red, 65 cars are SUVs, and 75 cars are neither red no SUVs. How many cars are red SUVs?
- 6. A family has two children.
 - (a) What is the probability that both children were born on the weekend?
 - (b) Given that neither child was born on a Monday, what is the probability that both children were born on the weekend?
 - (c) Are the events "both children were born on the weekend" and "neither child was born on a Monday" inedependent events?
 - (d) Are the events "both children were born on the weekend" and "neither child was born on a Monday" mutually exclusive events?
- 7. When the weather is dry, the probability that your flight will be delayed is 10%. When is it raining, the probability that your flight will be delayed is 25%. When it is snowing, the probability that your flight will be delayed is 45%. Suppose the probability of rain is 18% and the probability of snow is 13%.
 - (a) What is the probability that your flight will be delayed?
 - (b) Suppose you are woken up by an alert that your flight is delayed, before you have a chance to check the weather. What is the probability that is snowing?
- 8. Calculate the following.

$$\sum_{k=2}^{6} \frac{5k+1}{2^k-1}$$

9. A random sample of 6 bullfrogs were studied in their natural habitat, and the number of times that they croaked over a period of 15 minutes was recorded. This data is listed below.

Find the mean, median, mode, and standard deviation for the set of data.

Module 5: counting (sections 7.3 and 7.4)

- product rule
- opermutations
- Combinations
- $1.\ A$ restaurant serves 12 side dishes 3 potato dishes, 5 vegetable dishes, and 4 pasta dishes. Customers are allowed to shoose three distinct side dishes.
 - (a) How many possible side dish combinations can one order at this restaurant?
 - (b) How many possible side dish combinations can one order at this restaurant if you have to order 1 potato dish, 1 vegetable dish, and 1 pasta dish?
 - (c) How many possible side dish combinations can one order at this restaurant if you have to order exactly two vegetable dishes?
 - (d) How many possible side dish combinations can one order at this restaurant if you have to order at least two vegetable dishes?

Product rule: if an event can broken into k stages, and the first stage has nI possible outcomes, the second stage has n2 possible, outcomes, kth stage has nk possible outcomes, then there are a total

of

(4)

$$n_1 \times n_2 \times n_3 \times ... \times n_K$$
 Possible wheres.

$$\frac{|2!}{2! \cdot n_2} = \frac{|K \cdot 1| \cdot 10 \cdot 9!}{3 \cdot 3 \cdot 1 \cdot 9!} = 220$$
 (consumbus)

(b)
$$\frac{3}{80} \times \frac{5}{80} \times \frac{4}{800} \approx 60$$
 (pand the)

$$\frac{5C_2}{\text{VeG.}} \times \frac{10}{1000 - \text{VeC}} = 10 \times 7 = 70$$

$$\frac{n!}{0!} = n \cdot 1 = n \cdot n \cdot 1 \cdot 0! = 1$$

(d) # VEC. DISHES = 2 =

$$\frac{5C_3}{Ve6.} \times \frac{7}{7}C_0 = 70 + 10 = 80$$
3 Ve6. DISNES
$$\frac{5!}{3!2!}$$

$$\frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-(n-r))!} = \frac{n!}{(n-r)!(r!)}$$

2. A club with 22 members must select a president, a vice-president, and secretary from among themselves. How many ways can they do this?

Permutations:
$$\frac{22!}{12-3!} = 22 \times 21 \times 20$$

3. A club with 25 members – 17 women and 8 men – must select 5 members to attend a club fair. If they want to send 3 women and 2 men, how many possible ways can they do this?

cader choses desur memer

$$\frac{12}{100} \times \frac{10}{100} \times \frac{1$$

Module 6: Sets and Probability (sections 7.2, 8.1, 8.2, 8.3)

- 1	Sets, elements,	L				
-)	Sote pipmente	Glibebte	emntii get	notation	COT DIJUIDO	' notation
		Jupacia.	CITIDIA 3CI	1101911011	SCI PUIIGCI	1101911011

- Intersection, union, complement, "mutually exclusive"
- Addition rule
- Venn diagram
- Listing/visualizing simple events (all equally likely)
- Calculating probabilities using P(A)=n(A)/n(S)

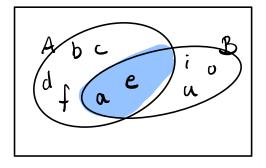
4. Let

$$A = \{a, b, c, d, e, f\}, \qquad B = \{a, e, i, o, u\}$$

- (a) Find $A \cap B$.
- (b) Find $A \cup B$.
- (c) List all subsets of $A \cap B$.
- (d) How many subset of B exist?
- (e) If the universal set U is the 26-letter alphabet, how many elements are in $A' \cap B'$?

chied cared Elements Se1





(a) INERSECTION

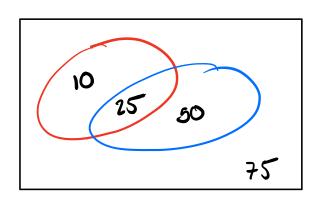
Note:

(d) COMU

$$\frac{1}{a} + \frac{1}{2} \times \frac{1}{2}$$

$$\frac{1}{a} \times \frac{1}{2} \times \frac$$

5. A parking lot contains 150 cars. 35 cars are red, 65 cars are SUVs, and 75 cars are neither red no SUVs. How many cars are red SUVs?

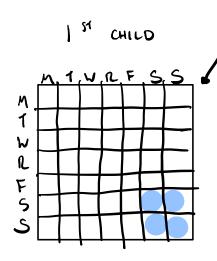


RED

SUVS

ADDITION RULE:

- 6. A family has two children.
 - (a) What is the probability that both children were born on the weekend?
 - (b) Given that neither child was born on a Monday, what is the probability that both children were born on the weekend?
 - (c) Are the events "both children were born on the weekend" and "neither child was born on a Monday" inedependent events?
 - (d) Are the events "both children were born on the weekend" and "neither child was born on a Monday" mutually exclusive events?



Saure Slace:

A Possible of cone

LET A = BOTH BOW ON WEEKEND

$$P(A) = \frac{n(A)}{n(S)} = \left(\frac{4}{49}\right)$$

BECAUSE ALL SIMPLE EVENTS AND ECHALLY LIKELY.

\bigcirc	Definition	of conditional	probability
\sim			(· · · · J

6. A family has two children.

- (a) What is the probability that both children were born on the weekend?
- (b) Given that neither child was born on a Monday, what is the probability that both children were born on the weekend?
- (c) Are the events "both children were born on the weekend" and "neither child was born on a Monday" inedependent events?
- (d) Are the events "both children were born on the weekend" and "neither child was born on a Monday" mutually exclusive events?

LET A = BOH BOW ON WEEKEND

Now Mes of A =
$$\frac{4}{36}$$

LET B = NEWHER BOW ON MCNDAY

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{4/49}{36/49} = \frac{4}{36}$$

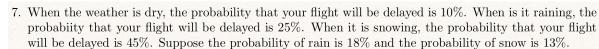
(c) A & B ARE UNDERGNOCUT IF AUX OF THE FOLLOWING ARE THUE:

CHY IF A.B INDEPENDENT

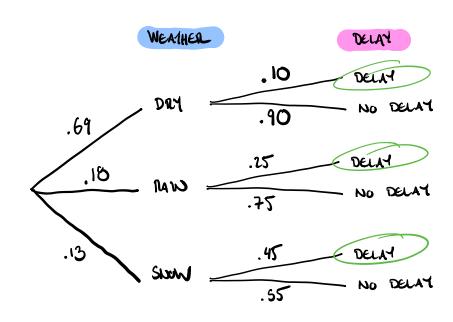
$$P(A) = \frac{4}{49}$$
, $P(A|B) = \frac{4}{36}$

So No, A & B Are Not Werendert.

No, Planb) =
$$\frac{4}{49} \neq 0$$
.



- (a) What is the probability that your flight will be delayed?
- (b) Suppose you are woken up by an alert that your flight is delayed, before you have a chance to check the weather. What is the probability that is snowing?



GIVEN CONDITIONAL PERS.

P(DELAY | DRY) = . 10

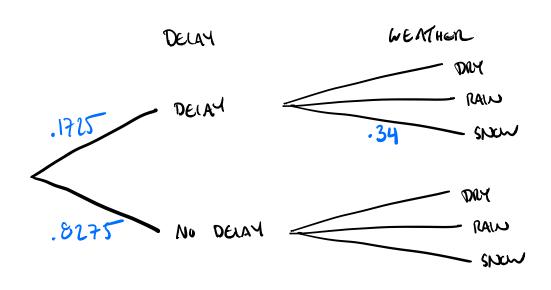
P(DELAY | MANN) = .25

P(DELAY | SANN) = .45

(b) BAYES' FORMULA:

P(SNOW) PLDELAY | SNOW) PLDELAY | SNOW)
PlDELAY)

$$\frac{1.13)1.45}{.1725} = .3391 \approx 34\%$$



Module 8: Descriptive statistics (sections 10.1, 10.2, 10.3)

- Frequency table, histogram, pie chart
- Sigma notation
- Mean, median, mode
- Standard deviation

$$\sum_{k=2}^{6} \frac{5k+1}{2^k-1}$$

$$= \frac{5(1)+1}{2^{2}-1} + \frac{5(3)+1}{2^{3}-1} + \frac{5(4)+1}{2^{4}-1} + \frac{5(4)+1}{2^{4}-1}$$

$$\frac{56) + 1}{2^{5} - 1} + \frac{560 + 1}{2^{6} - 1} = \dots$$

9. A random sample of 6 bullfrogs were studied in their natural habitat, and the number of times that they croaked over a period of 15 minutes was recorded. This data is listed below.

Find the mean, median, mode, and standard deviation for the set of data.

MEAN
$$X = \frac{2x_i}{6} = \frac{35+19+26+...+34}{6} = 32$$

MEDIAN

19

26

26

MUDE 26

SAMPLE

STANDARD DEV. $S = \sqrt{\frac{1}{n-1}(x_1-x_1)^2}$

52

26

34

POPULATION STANDARD DEV

36

4

 $G = \sqrt{\frac{1}{N}} \left(x_i - y_i \right)^2$

$$x_{i}$$
 x_{i} -32 x_{i} -32 x_{i} x_{i} -32 x_{i} $x_$

$$5 = \sqrt{\frac{1}{6-1}} \left(9 + 169 + 36 + 400 + 36 + 4 \right)$$

 $5 = \sqrt{130.8}$