2/15/2017 Quiz 1

Math 173 Introduction to Probability and Statistics

1. Here are 32 measurements (listed from least to greatest).

 $1.0\sqrt{6.2}$, 7.2, 7.5, 9.7, $10.5\sqrt{11.4}$, 11.8, 12.1, 12.1, 13.6, 14.3, 14.3, 14.6, 14.7, 15.2,

16.2, 16.2, 16.5, 17.6, 18.1, 19.8, 19.8, 20.3, 20.5, 20.5 / 22.1, 23.2, 23.2, 24.1, 25.8 / 30.9

(a) (8 points) Create a relative frequency histogram below using 6 classes of width 5.

CLASSES WILL BE INTERWALS OF LENGTH 5 . BEGINNING M THE LOWEST MEASUREMENT, 1.0, AND WILL INCLUDE THEIR LEST ENDPOINT (WIT RIGHT).

CLASS	FREGUENCY	relative Frequency	
[1,6]	1	1/32	10/32
[6,11)	5	5/32	
[11,16]	10	10/32	
[16,21)	10	10/32	
[21,26]	5	5/32	5/32
[26, 31]		1/32	
			1.0 6.0 11.0 16.0 21.0 26.0 31.0
(l·	o) (4 points) Wha	t proportion of the	measurements are greater than or equal to 11?

$$\frac{10}{32} + \frac{10}{32} + \frac{5}{32} + \frac{1}{32} = \frac{26}{32}$$
 on $\frac{13}{16}$

SHADED PART

(c) (2 points) How would you best describe the distribution, right-skewed, left-skewed, or symmetric?

SYMMETRIC

- 2. You are given n = 5 measurements: 6, 3, 5, 6, 5.
 - (a) (4 points) What is the median, m?

 MIDDLE VALUE, IN ORDER: 3,5,5,6,6 m = 5
 - (b) (4 points) What is the mean, \bar{x} ?

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{6+3+5+6+5}{5} = \frac{25}{5} \Rightarrow \bar{X} = 5$$

(c) (4 points) What is the mode, M?

(d) (4 points) What is the variance, s^2 ?

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{4} \left[(6-5)^{2} + (3-5)^{2} + (5-5)^{2} + (6-5)^{2} + (5-5)^{2} \right]$$

$$= \frac{1}{4} \left(1^{2} + 2^{2} + 0^{2} + 1^{2} + 0^{2} \right) = \frac{1}{4} \left(1 + 4 + 1 \right) = \frac{6}{4} = \frac{3}{2} \text{ or } 1.5$$

(e) (4 points) What is the standard deviation, s?

e) (4 points) What is the standard deviation, s?
$$5 = \sqrt{5^2} = \sqrt{\frac{3}{2}} \quad \text{or} \quad \sqrt{1.5}$$

HW EXERCISE
4.2 FROM

34.3

3. A Sample space S consists of five simple events with the following probabilities.

$$P(E_1) = P(E_2) = .15$$
 $P(E_3) = .4$ $P(E_4) = 2P(E_5)$

(a) (4 points) Find the probabilities for simple events E_4 and E_5 .

PROB. OF SIMPLE EVENTS MUST ADD UP TO 1: $P(E_1) + P(E_2) + P(E_3) + P(E_4) + P(E_5) = 1$ $\Rightarrow .15 + .15 + .4 + P(E_4) + P(E_5) = 1 \Rightarrow P(E_4) + P(E_5) = .3$ $\Rightarrow 2P(E_5) + P(E_5) = .3 \Rightarrow 3P(E_5) = .3 \Rightarrow P(E_5) = .1 \text{ and } P(E_4) = .2$ (b) (4 points) Find the probabilities for the following two events.

$$A = \{E_1, E_3, E_4\} \qquad B = \{E_2, E_3\}$$

$$P(A) = P(E_1) + P(E_3) + P(E_4) \qquad P(B) = P(E_1) + P(E_3)$$

$$= .15 + .4 + .2 = \boxed{.75}$$

(c) (4 points) List the simple events that are either in event A or event B or both

(d) (4 points) List the simple events that are in both event A and event B.