3/27/2017 Quiz 3

Math 173 Introduction to Probability and Statistics

Please box your final answers. Calculators are allowed, but not required. Answers may be left as fractions and/or expressions that may contain square-root $(\sqrt{\cdot})$, factorial (!), permutation (P_r^n) , and combination (C_r^n) notation.

- 1. City crime records show that 20% of all crimes are violent and 80% are nonviolent, involving theft, forgery, and so on. Ninety percent of violent crimes are reported versus 70% of nonviolent crimes.
 - (a) (4 points) What is the overall reporting rate for crimes in the city?

LET S, = EVENT THAT CRIME IS VIOLENT

SZ = EVENT THAT CRIME IS DINOVIOLENT

A = EVENT THAT CRUME IS REPORTED

THEN BY LAW OF TOTAL PROBABILITY, P(A)=P(S,)P(A|S,) + P(S,)P(A|S,)
= (.2)(.9) + (.8)(.7)
= (.74)

(b) (4 points) If a crime in progress is reported to the police, what is the probability that the crime is violent? What is the probability that it is nonviolent?

BY BAYES TIME, P(S, IA) = P(S,)P(AIS,)
P(A)

 $= \frac{(.2)(.9)}{.74} = \frac{9}{37} \approx \boxed{.2432}$ AND SO $P(S_2|A) = 1 - P(S_1|A) = \boxed{.7568}$

(c) (2 points) Refer to part (b). If a crime in progress is reported to the police, why is it more likely that it is a nonviolent crime? Wouldnt violent crimes be more likely to be reported? Can you explain these results?

EVEN THOUGH VIOLENT CTIMES ARE MORE LIKELY TO BE REPORTED.

ONLY 20% OF CRIMES ARE VIOLENT.

MOST CRIME IS NOW-VIOLENT.

2. A random variable x can equal 0, 1, 2, 3, 4, or 5. A portion of the probability distribution is shown here.

(a) (2 points) Find p(4).

(b) (4 points) Find the expected value E[x], i.e. the population mean μ .

$$E[x] = \mu = \sum x p(x) = (0)(.16) + (1)(.2) + (2)(.35)$$

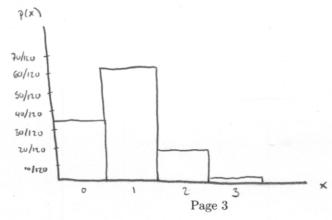
$$+ (3)(.1) + (4)(.15) + (5)(.04)$$

$$= .2 + .7 + .3 + .6 + .2$$

$$= 2$$

(c) (4 points) Find the standard deviation σ for the random variable x.

×	x - M	(x-m)2	p(x)	
0	٠٧.	4	.16	52 = (x-m2 p(x)
1	-1	1	. 2	
2	0	0	.35	= (4)(.16) + (1)(.2) + (0).35
2 3 4		1	1.1	+ (1)(1) + (4)(15) + (9)(04)
4	2	4	1.15	
5	3	9	.04	= 1.9


- 3. A company has 10 applicants for 3 positions: 3 women and 7 men. Suppose that the 10 applicants are equally qualified and that no preference is given for choosing either gender. Let x equal the number of women chosen to fill the $\frac{1}{2}$ positions.
 - (a) (8 points) Fill in the following chart with all possible values of the random variable x, along with the corresponding probabilities p(x).

$$p(0)$$
: # WAYS TO CHOOSE O WOMEN & 3 MEN = $C_0^3 \cdot C_3^7 = 35$
so $p(0) = \frac{35}{120} = \frac{7}{24} \approx .2917$

$$P(1)$$
: # WAYS TO CHOOSE I WOMAN & 2 MENS = $C_1^3 \cdot C_2^7 = \frac{63}{120}$
So $P(1) = \frac{63}{120} = \frac{21}{40} = .525$

$$P(2)$$
: # WAYS TO CHOOSE 2 WOMENS & 1 MAN = C_{2}^{3} . C_{1}^{7} = $\frac{21}{120}$ = $\frac{7}{40}$ = .175
 $P(3)$: # WAYS TO CHOOSE 3 WOMENS & 0 MENS = C_{3}^{3} . C_{2}^{3} = $\frac{1}{40}$

(b) (2 points) Sketch a probability histogram for x. Don't spend much time on this. It doesn't have to be perfect.

4. (4 points) You can insure a \$50,000 diamond for its total value by paying a premium of *D* dollars. If the probability of loss in a given year is estimated to be .01, what premium should the insurance company charge if it wants the expected gain to equal \$1,000?

$$\frac{x | p(x)}{D - 50,000} = [x] = M = \sum_{x \neq (x)} x p(x)$$

$$= (D - 50000)(.01) + (D).99$$

$$= .01 D - 500 + .99D$$

$$= D - 5000$$

D =
$$\frac{1500}{1500}$$