3.1 Quadratics

In several a quadratic function is
a function of the form:

$$
\begin{align*}
& \left.f(x)=a x^{2}+b x+c\right\} \text { General Form } \\
& \downarrow \\
& f(x)=a(x-h)^{2}+k \quad \text { standard form }
\end{align*}
$$

Graph of a Quadratic function (Parabola)


Completing the square
Example
Express $x^{2}+4 x$ in the form $a(x-h)^{2}+k$ by competing the square.

$$
x^{2}+4 x=x^{2}+2 x+2 x
$$



Steps to complete the Square
Given $a x^{2}+b x+c$

Step 1: Factor ont the coefficient of $x^{2}$

Step 1: Factor out the coetticient of $x$ from each term.

$$
a x^{2}+b x+c=a\left[x^{2}+\frac{b}{a} x+\frac{c}{a}\right]
$$

Step 2: (a) Half the new coefficient of $x$ and form a perfect square.
(b) Then subtract (new coettisiont of $x$ ) from outside the perfect square.

$$
a\left[x^{2}+\frac{b}{a} x+\frac{c}{a}\right]=a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}\right]
$$

Step 3 : Simplify

$$
\begin{aligned}
& a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}\right]^{0^{000}\left\{\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}\right\}}\{\begin{array}{l}
\text { Recall: } \\
\left.=a\left[\left(x+\frac{b}{2 a}\right)^{n}+\frac{c}{a}-\frac{b^{2}}{(2 a)^{2}}\right]^{000000} a^{n}\right\}
\end{array} \underbrace{(a b}\}
\end{aligned}
$$

$$
\begin{aligned}
& =a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\right] \quad\left\{a \times \frac{b^{2}}{4 a^{2}}=\frac{4 a b^{2}}{4 a \times 4 a}=\frac{b^{2}}{4 a}\right\} \\
& =a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a} \\
& \Leftrightarrow a(x-h)^{2}+k
\end{aligned}
$$

where $h=-\frac{b}{2 a}$ and $k=c-\frac{b^{2}}{4 a}$
$\underline{\text { Example } 1}($ Core 1: $a=1)$
Let $f(x)=x^{2}+8 x+13$
(a) Express $f$ in standard form: $a(x-h)^{2}+k$
(b) Find the vertex of Graph $y=f(x)$
(a) Find the $x$ and $y$ intercepts of $y=f(x)$
(d) Sketch graph of $y=f(x)$
(e) state the minimum / maximum value.
(e) State the minimum / maximum n value.

Solution
(a)

$$
\begin{aligned}
f(x) & =x^{2}+8 x+13 \\
& =(x+4)^{2}+13-4^{2} \\
= & (x+4)^{2}+13-16 \\
= & (x+4)^{2}-3 \\
& a(x-h)^{2}+k
\end{aligned}
$$

(b) Vertex: $(h, k)=(-4,-3)$
(c) $\mid y$-intercept (Set $x=0)$

$$
x^{2}+8 x+13
$$

when $x=0: y=0^{2}+8(0)+13=13$
when $x=0: y=0+\gamma(0)+1)=11$
So $y$ intercept will be at the point $(0,13)$
Note: for a quadratic $a x^{2}+b x+c$, the $y$-interopt will always be $(0, c)$.
$x$-intercepts (Set $y=0$ )

$$
\begin{aligned}
& y=x^{2}+8 x+13=0 \\
& \Rightarrow x^{2}+8 x+13=0 \\
& (x+4)^{2}-3=0 \\
& (x+4)^{2}=3 \\
& x+4= \pm \sqrt{3} \\
& x= \pm \sqrt{3}-4 \\
& x=\sqrt{3}-4 \quad \text { or } x=-\sqrt{3}-4
\end{aligned}
$$

$$
\frac{x=-2.27}{x \text {-intercepts: } \quad \text { or }(-2.27,0),(-5.73,0)}
$$

(d) Graph of $y=x^{2}+8 x+13$

$$
\Rightarrow \quad y=(x+4)^{2}-3
$$


(c) Minimum value is $y=-3$

Example $2($ Case $2: a \neq 1)$
Let $f(x)=-3 x^{2}-30 x-13$
(a) Express $f$ in Standard form
(b) Find the vertex.

Solution
(a) $\quad f(x)=-3 x^{2}-30 x-73$

$$
\begin{aligned}
& =-3\left[x^{2}+10 x+\frac{73}{3}\right] \\
& =-3\left[(x+5)^{2}+\frac{73}{3}-\left(5^{2}\right)\right] \\
& =-3\left[(x+5)^{2}+\frac{73}{3}-25\right] \\
& =-3(x+5)^{2}-73+75 \\
& =-3(x+5)^{2}+2 \quad \text { standand } \\
& \text { form }
\end{aligned}
$$

(b) Vertex $=(-5,2)$

