
\$2.8 Ope-10-one Functions & THEIR INVERSES

Observe:

f has a property that a does not.

Def: A FUNCTION f is one-to-one (1-1) if

Different what armore proced different outlides, $a \neq b \Rightarrow f(a) \neq f(b)$

(i.e. IF orthis are equal their inputs are equal, f(a) = f(b) = 0

NOTE: F IS NOT 1-1

IF YOU CAN FIND TWO

DIFFERENT WAYS THAT

PRUDUCE THE

e.g. $f(x) = x^2$ is not one-to-one because 2 - 2 are different inputs

THAT Provide the same output f(z) = f(-2) = 4.

e.g. f(x) = 3x + 4 is one -10-one Because

IF f(a) = f(b) Then 3a + 4 = 3b + 4 3a = 3b

DOUT SLOEAT 17.
THERE IS ADOMHER.
WAY!

GRAPHICALLY:

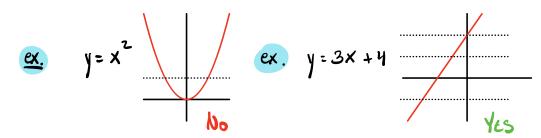
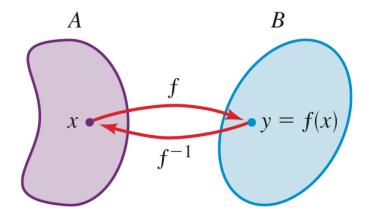

y = f(x) $| f(x_1) | | f(x_2)$ $| 0 | x_1 | x_2 | x$

FIGURE 2 This function is not one-to-one because $f(x_1) = f(x_2)$.

HORIZONTAL LINE TEST

a = b

A function is one-to-one if and only if no horizontal line intersects its graph more than once.



DEFINITION OF THE INVERSE OF A FUNCTION

Let f be a one-to-one function with domain A and range B. Then its **inverse** function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

for any y in B.

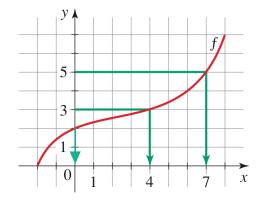
On't mistake the
$$-1$$
 in f^{-1} for an exponent.

$$f^{-1}(x)$$
 does not mean $\frac{1}{f(x)}$

f-1/5) = 7

f-1(3) = 4

f-1(2) = 0


The reciprocal 1/f(x) is written as $(f(x))^{-1}$.

Suppose
$$f$$
 is 1-1 & $f(8) = -3$, $f(-3) = 24$, $f(0) = 8$.
Find $f^{-1}(8)$, $f^{-1}(-3)$, & $f^{-1}(24)$.

USIDO A TABLE OR GRAPH TO FIND INVENSE VALUES:

x	h(x)	
2 3 4 5 6 7	5 — 8 — 12 — 3 — 3	h='(8) = 3 h='(12) = 4 h='(3) = 6

Finding values of
$$h^{-1}$$
 from a table of h

FIGURE 8 Finding values of f^{-1} from a graph of f

INVERSE FUNCTION PROPERTY

Let f be a one-to-one function with domain A and range B. The inverse function f^{-1} satisfies the following cancellation properties:

$$f^{-1}(f(x)) = x$$
 for every x in A
 $f(f^{-1}(x)) = x$ for every x in B

Conversely, any function f^{-1} satisfying these equations is the inverse of f.

ex. Is it that
$$f(x) = 4x+3$$
 of $g(x) = \frac{x-3}{4}$
Are uncases of eacherner?

HOW TO FIND THE INVERSE OF A ONE-TO-ONE FUNCTION

- 1. Write y = f(x).
- **2.** Solve this equation for *x* in terms of *y* (if possible).
- **3.** Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

ex. Given
$$f(x) = \frac{5x-7}{4}$$
, Find $f^{-1}(x)$.

ex. Given
$$f(x) = \frac{2}{1-x}$$
, Find $f^{-1}(x)$.

ex. Given
$$f(x) = \frac{x+1}{x-1}$$
, Find $f^{-1}(x)$.

ex.
$$f(x) = 2 + \sqrt{x-3}$$

Sulface f 15

(a,b) is on the Graph y=f(x) THEN (b,a) IS ON THE GRAPH y=f-1(x)

The graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

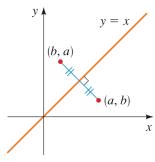


FIGURE 9

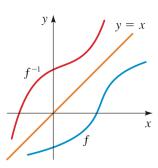


FIGURE 10

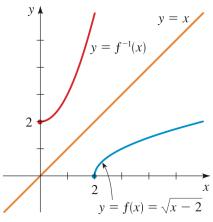
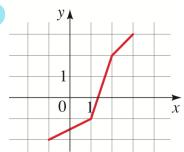
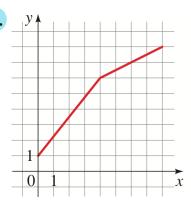




FIGURE 11

89–90 ■ Graph of an Inverse Function Use the graph of f to sketch the graph of f^{-1} .

89.

ADDITIONAL EXERCISES:

61.
$$f(x) = 4 - x^2$$
, $x \ge 0$ **62.** $f(x) = x^2 + x$, $x \ge -\frac{1}{2}$

$$f(x) = x^2 + x, \quad x \ge -\frac{1}{2}$$

63.
$$f(x) = x^6, \quad x \ge 0$$

63.
$$f(x) = x^6$$
, $x \ge 0$ **64.** $f(x) = \frac{1}{x^2}$, $x > 0$

65.
$$f(x) = \frac{2 - x^3}{5}$$
 66. $f(x) = (x^5 - 6)^7$

66.
$$f(x) = (x^5 - 6)^7$$

67.
$$f(x) = \sqrt{5 + 8x}$$

67.
$$f(x) = \sqrt{5 + 8x}$$
 68. $f(x) = 2 + \sqrt{3 + x}$

69.
$$f(x) = 2 + \sqrt[3]{x}$$

70.
$$f(x) = \sqrt{4 - x^2}$$
, $0 \le x \le 2$