Exam 1

Answer all 20 questions for a total of 100 points. Write your solutions in the space provided, simplify all fractions and radical expressions, and put a box around your final answers.

Good luck!

1. (5 points) Express the inequality in interval notation.
$-\infty$

$x \leq-5$

LEA
Not included
RIGHT

$$
(-\infty,-5]
$$

2. (5 points) Perform the operations and simplify as one fraction.

$$
3+\frac{2}{10}-\frac{4}{15}
$$

$L C D=30 \quad 3 \cdot \frac{30}{30}+\frac{2}{10} \cdot \frac{3}{3}-\frac{4}{15} \cdot \frac{2}{2}$

$$
\frac{90+6-8}{30}=\frac{88}{30}=\frac{44}{15}
$$

3. (5 points) Evaluate the expression numerically.

$$
\begin{aligned}
& \frac{1-\frac{1}{8}}{\frac{3}{4}+\frac{1}{6}} \\
& \operatorname{LCD}(4,6,8)=24=\frac{24-3}{24\left(\frac{3}{4}+\frac{1}{6}\right)}=\frac{21}{22} \\
& \left(\operatorname{ALT}: \frac{1-\frac{1}{8}}{\frac{3}{4}+\frac{1}{6}}=\frac{\frac{8}{8} \cdot \frac{1}{8}}{\frac{9}{12}+\frac{2}{12}}=\frac{\frac{7}{8}}{\frac{11}{12}}=\frac{7}{8} \div \frac{11}{12}=\frac{7}{8} \times \frac{12}{11}=\frac{7 \cdot 4 \cdot 3}{4 / 2 \cdot 11}=\frac{21}{12}\right)
\end{aligned}
$$

4. (5 points) Simplify the expression completely.

$$
\underbrace{(-3)^{3}}\left(x^{4}\right)^{3} \cdot 2 x^{4}=-27 x^{12} \cdot 2 x^{4}=-54 x^{16}
$$

(ALT: $\left.(-1)^{3} 3^{3}=-27\right)$
5. (5 points) Simplify the expression completely and eliminate any negative exponents.

$$
=\left(\frac{8}{a^{2} a^{3}}\right)^{-1}=\left(\frac{8 a^{-2}}{a^{3}}\right)^{-1}\left(\frac{8}{a^{5}}\right)^{-1}=\frac{a^{5}}{8}
$$

$\left(\begin{array}{c}\text { NOTE THAT } 8 \text { HAS NO EXPONENT. } \\ 8 a^{-2} \neq(8 a)^{-2}\end{array}\right.$
6. (5 points) Evaluate the expression numerically.
$4^{3 / 2}=\left\{\begin{array}{ll}\left(4^{1 / 2}\right)^{3}=2^{3} \\ \left(4^{3}\right)^{1 / 2}=64^{1 / 2}\end{array}\right\}^{6}=8$
$8-2=6$
7. (5 points) Perform the indicated operations and simplify.

$$
\begin{aligned}
& \underbrace{3(2 x+1)}_{(6 x+3)}(x-5)-4\left(x^{2}-2 x+1\right)-4\left(\mathbf{x}^{2}-2 x+1\right) \\
& =6 x^{2}-30 x+3 x-15-4 x^{2}+8 x-11 \\
& =\frac{2 x^{2}-19 x-19}{.}
\end{aligned}
$$

8. (5 points) Perform the indicated operations and simplify.

$$
(2 x+3)^{2}
$$

$(A+B)^{2}=A^{2}+2 A B+B^{2}$
$\binom{$ ALT: $(2 x+3)(2 x+3)=4 x^{2}+6 x+6 x+9=4 x^{2}+12 x+9}{$ F. O. I. L. }
9. (5 points) Factor the expression completely.

$$
2(x-3)^{2}+2 x(x-3)
$$

LCD: $2(x-3)$
$=2(x-3)[(x-3)+x]$
$=2(x-3)(2 x-3)$
10. (5 points) Factor the expression completely.

$$
\underbrace{x^{3}}_{\text {GCF }}\left(x^{2}+5 x-36\right)=x^{5}+36 x^{3}
$$

11. (5 points) Factor the expression completely.

$$
\begin{aligned}
& 36 x^{2}-49 \\
&=(6 x)^{2}-7^{2}=(6 x+7)(6 x-7) \\
& A^{2}-B^{2}=(A+B)(A-B)
\end{aligned}
$$

12. (5 points) Perform the indicated operation and simplify.

$$
\frac{8 x-3}{2 x-1}-4 \cdot \frac{2 x-1}{2 x-1}
$$

$$
=\frac{8 x-3-6 x+4}{2 x-1}=\frac{1}{2 x-1}
$$

To add/ subtract fractions, you need to get common denominators. That's what we need to do here.

As opposed to when SOLVING EQUATIONS, when you can get rid of denominators by multiplying BOTH SIDES OF THE EQUATION by a common denominator.
13. (5 points) Perform the indicated operation and simplify.

$$
\begin{aligned}
& \frac{x^{2}-4}{x^{2}-1} \cdot \frac{x^{2}+3 x-4}{x^{2}+6 x+8} \\
& =\frac{(x+2)(x-2)}{(x+1)(x-1)} \cdot \frac{(x+4)(x-1)}{(x+4)(x+2)}=\frac{x-2}{x+1}
\end{aligned}
$$

14. (5 points) Solve the equation

$$
\frac{2 x+2}{3}-\frac{9 x-6}{4}=\frac{2 x-1}{6} \quad L C D=12
$$

$$
\begin{array}{ll}
\frac{2 x+2}{3} \cdot 12-\frac{9 x-6}{4} \cdot 12=\frac{2 x-1}{6} \cdot 12 & \begin{array}{l}
\text { Since this is an EQUATION, we } \\
\text { can MULTIPLY BOTH SIDES }
\end{array} \\
4(2 x+2)-3(9 x-6)=2(2 x-1) & \begin{array}{l}
\text { OF THE EQUATION by } \\
\text { anything we want, egg. the LCD. }
\end{array} \\
8 x+8-27 x+18=4 x-2 &
\end{array}
$$

$$
-19 x+26=4 x-2
$$

$$
+19 x+2+19 x+2
$$

$$
28=23 x
$$

$$
\begin{aligned}
& \frac{28}{23}=\frac{23 x}{2 / 3} \\
& =\frac{5}{x+4}(x-3)(x+4)
\end{aligned}
$$

$$
(x-3)(x+4) \frac{6}{x-3}=\frac{5}{x+4}(x-3)(x+4)
$$

$$
6(x+4)=5(x-3)
$$

$$
6 x+24=5 x-15
$$

$$
-5 x-24 \quad-5 x-24
$$

$$
x=-39
$$

16. (5 points) Solve the equation.

$$
\frac{1}{5+x}-\frac{1}{5-x}=\underbrace{\frac{2 x-8}{25-x^{2}}}_{(5+x)(5-x)} \quad L C D=(x+5)(x-5)
$$

EqUATION \Rightarrow MULTIPLY ALL TERMS BY LCD.
$\frac{1}{s+x} \cdot(s+x)(s-x)-\frac{1}{s-x} \cdot(s+x)(s-x)=\frac{2 x-8}{(s+x)(5-x)} \cdot(s+x)(5-x)$
$5-x-(5+x)=2 x-8$
$-2 x=2 x-8$
$-4 x=-8$
$x=2$
17. (5 points) Find the distance between the points $(1,-4)$ and $(-2,5)$.

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\therefore d=\sqrt{(-2-1)^{2}+(5-(-4))^{2}}$
$=\sqrt{(-3)^{2}+9^{2}}=\sqrt{9+81}$

$$
=\sqrt{90}=\sqrt{9} \sqrt{10}=3 \sqrt{10}
$$

18. (5 points) Find the midpoint of the line segment connecting $(1,-4)$ and $(-2,5)$.

$$
\begin{gathered}
x_{1} y_{1} x_{2} y_{2} \\
\text { AVERAGE OF } x \text {-COORS. } \\
\text { MIDPOINT OF }\left(x_{1}, y_{1}\right) \dot{\varepsilon}\left(x_{2}, y_{2}\right) \text { is }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) . \\
\therefore\left(\frac{1-2}{2}, \frac{-4+5}{2}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)
\end{gathered}
$$

19. (5 points) Determine which of the given points are on the graph of the equation.

$$
\sqrt{x-3}=(y+2)^{2}
$$

(a) $(4,-3)$
(b) $(4,-6)$
(c) $(19,-1)$
(d) $(19,0)$
(a) $\sqrt{4-3}=(-3+2)^{2} \Leftrightarrow \sqrt{1}=1^{2}$
(b) $\sqrt{4-3}=(-6+2)^{2} \Longleftrightarrow \sqrt{1}=(-4)^{2}$
(c) $\sqrt{19-3}=(-1+2)^{2} \Longleftrightarrow \sqrt{16}=1^{2}$
(d) $\sqrt{19-3}=(0+2)^{2} \Leftrightarrow \sqrt{16}=2^{2}$
20. (5 points) Give an equation of the circle with center $(5,-3)$ that passes through the point $(1,1)$.

RADIUS $r=$ DISTANCE FROM CENTER TO ANY POINT ON CIRCLE

$$
\begin{aligned}
& =\operatorname{Dishance} \text { From }(5,-3) \text { To }(1,1) \\
& =\sqrt{(5-1)^{2}+(-3-1)^{2}}=\sqrt{16+16}=\sqrt{32} \\
r=\sqrt{32} & \Rightarrow r^{2}=32
\end{aligned}
$$

EqUATION OF CIRCLE WTIH CERLGR $(h, k) \dot{\varepsilon}_{i}$ RADIUS r

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-5)^{2}+(y+3)^{2}=32
\end{aligned}
$$

Fractions

Eancion?

YES EQUATION

Multiply every term on Bolt SIDES of the E(walion) BY LCD.

Boom. Equivalent Equation (with same solurlous)
WIIH NO dedominalurs.

Get common denominators (LCD) By muliplying Tops \& BUTTOMS OF EACH Fraction by exine factors To TUIN DGNOMINAIORS into LCD.

Factor all numerators $\dot{\text { es, }}$ denominators. cancel factors that appear in Bol a numerator E a denominator I SAME OR DIFFERENT fractions, doesnit mater).

To FIND LCD:
(1) Factor all denominators
(2) $\angle C D=$ Product of EACH DIStinct Faction Th al APPEARS in The denominators, raised to the highest Exponent that appears.
egg.

$$
\begin{aligned}
& \frac{1}{2 x(x+1)^{2}}+\frac{1}{3 x^{2}(x+1)} \quad L C O=2 \cdot 3 \cdot x^{2} \cdot(x+1)^{2}=6 x^{2}(x+1)^{2} \\
& =\frac{1}{2 x(x+1)^{2}} \cdot \frac{3 x}{3 x}+\frac{1}{3 x^{2}(x+1)} \cdot \frac{2(x+1)}{2(x+1)}=\frac{3 x}{6 x^{2}(x+1)^{2}}+\frac{2(x+1)}{6 x^{2}(x+1)^{2}} \\
& =\frac{3 x+2(x+1)}{6 x^{2}(x+1)^{2}}=\frac{3 x+2 x+2}{6 x^{2}(x+1)^{2}}=\frac{5 x+2}{6 x^{2}(x+1)^{2}}
\end{aligned}
$$

