The following 20 problems cover the material that will appear on Exam 2 (§1.3-3.1).
Answer all problems without a calculator. Simplify all fractions and radical expressions that appear in your answers.
We will take Exam 2 during the second half of class on Tuesday, 7/25.

1. Find the slope of the line through the points $P(6,3)$ and $Q(2,0)$.
2. Find an equation of the line through the point $(1,-4)$ that is parallel to the line $x+2 y+6=0$.
3. Find all real solutions to $0=x^{2}-4 x+1$.
4. Find all real solutions to $\frac{4 x}{x^{2}+4}=1$.
5. Use interval notation to state the solutions to the inequality $4 x+7<\frac{3}{2}$.
6. Use interval notation to state the solutions to the inequality $2 x^{2}+5 x \geq 0$.
7. Evaluate $f(2)+f(-1)$ when $f(x)=x^{3}-3 x$.
8. Use interval notation to state the domain of the function $f(x)=\sqrt{1-5 x}$.
9. Use the grah below to find the value of x at each local maximum.

10. Determine the net change of $r(t)=6-\frac{t}{6}$ from $t=6$ to $t=12$.
11. Find $f^{-1}(10)$ when $f(x)=6 x+7$.
12. Evaluate $g(f(2))$ when $f(x)=5 x-2$ and $g(x)=3-x^{2}$.
13. Use the table below to evaluate $g(f(3))$.

\boldsymbol{x}	1	2	3	4	5	6
$\boldsymbol{f}(\boldsymbol{x})$	2	3	5	1	6	3
$\boldsymbol{g}(\boldsymbol{x})$	3	5	6	2	1	4

14. True of false: $f(x)=4-3 x$ is the inverse of $g(x)=\frac{3-x}{4}$.
15. Find a formula for the inverse of $f(x)=2 x^{3}-5$.
16. Find the vertex of the parabola $y=x^{2}+4 x$.
17. Use interval notation to state the range of the quadratic function $h(x)=-x^{2}-4 x+4$.
18. Find all x-intercepts of the graph $y=-x^{3}+3 x^{2}$.
19. Sketch the graph of the function

$$
f(x)= \begin{cases}1-x & \text { if } x \leq 0 \\ x & \text { if } x>0\end{cases}
$$

20. Sketch the graph $y=-\sqrt{x+2}$ not by plotting points but by starting with the graph of a standard function and applying transformations.
