Name:
Math 392 Linear Algebra and Vector Analysis for Engineers

1 Part 1: Answer question 1

1. (8 points) (a) Calculate the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left[\begin{array}{ll}
2 & 5 \\
4 & 1
\end{array}\right]
$$

(b) Use part (a) to solve the system of ordinary differential equations

$$
\begin{array}{r}
y_{1}^{\prime}=2 y_{1}+5 y_{2} \\
y_{2}^{\prime}=4 y_{1}+y_{2}
\end{array} \quad \text { with initial conditions } \quad \begin{aligned}
& y_{1}(0)=1 \\
& y_{2}(0)=7
\end{aligned} .
$$

2 Part 2: Answer 3 out of 4 of the following questions.

2. (8 points) A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ back to the starting point. Find the work done on this particle by the force field

$$
\vec{F}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle .
$$

3. (8 points) Let

$$
\vec{F}=x^{2} \vec{i}+(x+z) \vec{j}+y z \vec{k}
$$

let S bet the surface of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane, and let \vec{n} be the upward pointing unit normal vector to S. Find the value of the surface integral

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S
$$

(a) directly, and
(b) using Stoke's theorem.
4. (8 points) Let

$$
\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}
$$

let S be the surface of the region between the graphs of $z=\sqrt{2-x^{2}-y^{2}}$ and $z=\sqrt{x^{2}+y^{2}}$, and let \vec{n} be the outward pointing unit normal vector to S (Note that \vec{n} points upward from the top surface and downward from the bottom surface). Find the value of the surface integral

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

(a) directly, and
(b) using the divergence theorem.
5. (8 points) Use Green's theorem to find the area under one arch of the cycloid given by the parametric equations

$$
C_{1}: \begin{aligned}
& x(t)=t-\sin t \\
& y(t)=1-\cos t
\end{aligned} \quad ; \quad 0 \leq t \leq 2 \pi
$$

That is, find the area of the region enclosed by $C=C_{1}+C_{2}$, where C_{2} is the line segment from $(2 \pi, 0)$ to $(0,0)$. Note that C is oriented clockwise.

