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Circle homeomorphisms

Let T = {z ∈ C | |z| = 1} and π(x) = e2πix : R→ T.

Definition
A circle homeomorphism is an orientation preserving homeomorphism
h : T→ T with lift H : R→ R satisfying

π ◦H(x) = h ◦ π(x) , H(x+ 1) = H(x) + 1, ∀x ∈ R.

We assume that 0 ≤ H(0) < 1.
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Types of circle homeomorphisms

h is quasisymmetric if ∃M > 1 such that

1

M
≤ H(x+ t)−H(x)

H(x)−H(x− t) ≤M , ∀x ∈ R , ∀t > 0.

h is symmetric if ∃ε : R→ R such that ε(t)→ 0+ as t→ 0+ and

1

1 + ε(t)
≤ H(x+ t)−H(x)

H(x)−H(x− t) ≤ 1 + ε(t) , ∀x ∈ R , ∀t > 0.
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Circle endomorphisms

Definition
A circle endomorphism is an orientation preserving covering map f : T→ T of
topological degree d ≥ 2. We assume f(1) = 1. The lift F : R→ R satisfies

π ◦ F (x) = f ◦ π(x) , F (x+ 1) = F (x) + d, ∀x ∈ R.

We assume F (0) = 0.

R R

T T

π

F

π

f

John Adamski



Nested Markov partitions for circle endomorphisms

I f−1(1) creates ξ1 = {J0, J1, . . . , Jd−1}.
I Lift to partition of [0, 1], η1 = {I0, I1, . . . , Id−1}.
I Pull-back partitions: ξn = f−(n−1)(ξ1).

ξn = {Jωn | ωn = i0i1 . . . in−1, ik ∈ {0, 1, . . . , d− 1}, 0 ≤ k ≤ d− 1}.

fk(Jωn) ∈ Jik for 0 ≤ k ≤ n− 1

I Iωn is the lift of Jωn to [0, 1].

I Given {ηn}∞n=1 and 0 < C ≤ τ < 1 with Cn ≤ |Iωn | ≤ τn, there is a
unique circle endomorphism f that creates it.
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Types of circle endomorphisms

Definition

1. f is uniformly quasisymmetric if ∃M > 1 such that

1

M
≤ F−n(x+ t)− F−n(x)

F−n(x)− F−n(x− t) ≤M , ∀x ∈ R , ∀t > 0 , ∀n ≥ 1.

2. f has bounded nearby geometry if ∃M ≥ 1 such that ∀n ≥ 1 and
∀I, I ′ ∈ ηn that share an endpoint (modulo 1),

1

M
≤ |I

′|
|I| ≤M.

Theorem
(1) ⇐⇒ (2) ⇐⇒ f = h ◦ qd ◦ h−1, h quasisymmetric.
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Bounded geometry (weaker condition)

Definition
f has bounded geometry if ∃0 < C ≤ τ(C) < 1 such that

C ≤ |L||I| < τ, ∀L ⊂ I, I ∈ ηn, L ∈ ηn+1, ∀n ≥ 0.

Lemma
BNG ⇒ BG.
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Topological conjugacies

I Any two circle endomorphisms f and g of the same degree d ≥ 2 that
both have BG are topologically conjugate.

f ◦ h = h ◦ g

If f and g both have BNG then h is quasisymmetric.

I All circle endomorphisms f with BG are topologically conjugate to

qd(z) = zd, Qd(x) = dx,

T T
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h
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and semi-conjugate to the left-shift map σ : Σ→ Σ.
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Symbolic space Σ (review)

Σ =
∞∏
n=0

{0, 1, . . . , d− 1}.

I A point ω ∈ Σ is an infinite sequence ω = i0i1i2 . . . .

I A left-cylinder [ωn] ⊂ Σ of length n is the set of all points whose first n
terms agree with ω.

I The left-cylinders generate the left topology. The set Σ with the left
topology is called the symbolic space.

I Then for a point ω = i0i1 . . . ∈ Σ, we have

Σ ⊃ [ω1] ⊃ [ω2] ⊃ · · · ⊃ [ωn] ⊃ . . . ,

just as

T ⊃ Jω1 ⊃ Jω2 ⊃ . . . ⊃ Jωn ⊃ . . . .
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Symbolic dynamical system (review)

We define the projection πf : Σ→ T as

πf (ω) = Jω = ∩∞n=1Jωn = xω,

and the left shift map σ : Σ→ Σ,

σ : i0i1i2 · · · = i1i2 . . . .

Σ Σ

T T

πf

σ

πf

f

(Σ, σ) is called the symbolic dynamical system. It is the space of all forward
orbits for the dynamical system (T, f).
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Borel probability measures on T

I Let T = [0, 1] with 0 ∼ 1.

I Let B denote the Borel σ-algebra of subsets of T.

I M(T) denotes the set of all Borel probability measures µ on T.

I λ and | · | denote the Lebesgue probability measure on T.

I Non-atomic measures µ ∈M(T) with full support are in one to one
correspondence with circle homeomorphisms h.

h(x) = µ([0, x]), ∀x ∈ R (distribution function)

µ(A) = λ(h(A)), ∀A ∈ B; µ = h∗λ (pullback)
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Invariant measures

Definition
The measure µ ∈M(T) is invariant w.r.t. f : T→ T if

µ(f−1(A)) = µ(A), ∀A ∈ B.

Equivalently, let f∗ : M(T)→M(T) such that

f∗(µ)(A) = µ(f−1(A)), ∀A ∈ B(T). (pushforward)

An invariant measure with respect to f is a fixed point of the map f∗.

Remark
Let h be circle homeomorphism and

µ = h∗λ, f = h ◦ ◦qd ◦ h−1.

Then µ = h∗λ is invariant w.r.t. qd ⇐⇒ λ is invariant w.r.t. f = h ◦ qd ◦ h−1.
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Nested partitions for f with BG, preserve Lebesgue measure λ, d = 2

T

[0] [1]

[00] [01] [10] [11]

[000] [001] [010] [011] [100] [101] [110] [111]

[0000] [0001] [0010] [0011] [0100] [0101] [0110] [0111] [1000] [1001] [1010] [1011] [1100] [1101] [1110] [1111]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure: Two directed d-nary trees (d = 2). The dotted tree shows the preimages of
each partition interval and the solid tree shows the subsets of each partition interval .
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Two binary trees: Lebesgue measure λ preserved by both
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T

[0] [1]

[00] [01] [10] [11]

[000] [001] [010] [011] [100] [101] [110] [111]

[0000] [0001] [0010] [0011] [0100] [0101] [0110] [0111] [1000] [1001] [1010] [1011] [1100] [1101] [1110] [1111]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 4.7: Two directed d-nary trees (d=2). The dotted tree shows the
action of � on left-cylinders of ⌃, and the solid tree shows the action of �⇤

on right-cylinders of ⌃⇤.

j1, and in�1 = j0. For n � 0, define

P ([w⇤n]) = |Iwn |, P (⌃⇤) = |I| = 1. (4.5)

This defines P on G. Now let

P (
N[

k=1

[w⇤nk
]) =

NX

k=1

|Iwnk
|

where
SN

k=1[w
⇤
nk

] is a disjoint union. Then

P (⌃⇤) = |I0| + |I1|... + |Id�1| = 1.

For any right cylinder [w⇤n], the collection of right cylinders

{[jw⇤n] | j = 0, . . . , d � 1},

[100]

[0100] [1000][1001] [1100]

Figure: Every interval Ion has two subintervals Iωn0, Iωn1 ∈ ηn+1 and two preimage
intervals I0ωn , I1ωn ∈ ηn+1.
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Swapping forward paths and backward paths (1/3)

T

[0] [1]

[00] [10] [01] [11]

[000] [001] [010] [011] [100] [101] [110] [111]

[0000] [0001] [0010] [0011] [0100] [0101] [0110] [0111] [1000] [1001] [1010] [1011] [1100] [1101] [1110] [1111]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure: Since f preserves Lebesgue measure, the intervals of each partition ηn can be
“shuffled” by swapping intervals whose labels are reversals of one another, and they
still fit together as nested partitions. This is “untangling” the dotted tree.
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Swapping forward paths and backwad paths (2/3)

T

[0] [1]

[00] [10] [01] [11]

[000] [100] [010] [110] [001] [101] [011] [111]

[0000] [0001] [0010] [0011] [0100] [0101] [0110] [0111] [1000] [1001] [1010] [1011] [1100] [1101] [1110] [1111]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure: Since f preserves Lebesgue measure, the intervals of each partition ηn can be
“shuffled” by swapping intervals whose labels are reversals of one another, and they
still fit together as nested partitions. This is “untangling” the dotted tree.
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Swapping forward paths and backwad paths (3/3)

T

[0] [1]

[00] [10] [01] [11]

[000] [100] [010] [110] [001] [101] [011] [111]

[0000] [1000] [0100] [1100] [0010] [1010] [0110] [1110] [0001] [1001] [0101] [1101] [0011] [1011] [0111] [1111]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure: This yields a new sequence of nested partitions {η∗n}∞n=1 which defines a new
circle endomorphism f∗ that we call the dual circle endomorphism.
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The dual conjugacy h̃

The circle endomorphism f = h ◦ qd ◦ h−1 and the dual circle endomorphism
f∗ = h∗ ◦ qd ◦ (h∗)−1 are topologically conjugate.

f∗ = h̃ ◦ f ◦ h̃−1

h̃ = h∗ ◦ h−1

T T

T T

T T

f

h̃ h̃

h

h∗

qd

h

h∗

f∗
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Randomly generated dual circle endomorphisms and their dual conjugacy
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Figure: C = .1. LEFT: blue is h, red is h∗, black is h̃ = h∗ ◦ h−1. RIGHT: blue is
f = h ◦ q2 ◦ h−1, red is f∗ = h∗ ◦ q2 ◦ (h∗)−1.
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Properties of h̃, d = 2

I ∀n ≥ 0, h̃ sends endpoints of intervals in ηn to the endpoints of intervals
in η∗n, preserving their order.

I I0 and I1 do not move ⇒ h(0) = 0, h(1/2), and h(1) = 1 are fixed points.

I Furthermore,
|I0| = |I00|+ |I10| = |I00|+ |I01|

⇒ |I01| = |I10|
I There exist many fixed point of h̃.
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Properties of h̃, d = 2

More generally, when subsets are also preimages and one endpoint is fixed,

|I0...0︸︷︷︸
n−1

| = |I0 0...0︸︷︷︸
n−1

|+ |I1 0...0︸︷︷︸
n−1

| = |I0...0︸︷︷︸
n−1

0|+ |I0...0︸︷︷︸
n−1

1|

⇒ |I1 0...0︸︷︷︸
n−1

| = |I0...0︸︷︷︸
n−1

1|, and

|I1...1︸︷︷︸
n−1

| = |I0 1...1︸︷︷︸
n−1

|+ |I1 1...1︸︷︷︸
n−1

| = |I1...1︸︷︷︸
n−1

0|+ |I1...1︸︷︷︸
n−1

1|

⇒ |I0 1...1︸︷︷︸
n−1

| = |I1...1︸︷︷︸
n−1

0|.

That is,

Fix(h̃) ⊇
{
h

(
1

2n

)
, h

(
1

2
± 1

2n

)
, h

(
1− 1

2n

)∣∣∣∣ 1 ≤ n ≤ N} .
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More fixed points of h̃

I for any n ≥ 1, the endpoints of the interval

I0...0︸︷︷︸
n

1

are fixed by h̃. Let a1 denote the left endpoint of this interval (fixed).

I Now consider the interval
I0...0︸︷︷︸

n

1 0...0︸︷︷︸
n

.

Note that the label of this interval is a palindrome ⇒ its length is
preserved ⇒ its right endpoint a2 is fixed.

I Note:

a2 = left endpoint of I0...0︸︷︷︸
n

1 0...0︸︷︷︸
n−1

1.
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More fixed points of h̃

Figure: The increasing sequence {am}∞m=1 of fixed points of h̃, constructed with
n = 2.
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More fixed points of h̃

In this way, define

a3 = left endpoint of I0...0︸︷︷︸
n

1 0...0︸︷︷︸
n−1

1 0...0︸︷︷︸
n−1

1

a4 = left endpoint of I0...0︸︷︷︸
n

1 0...0︸︷︷︸
n−1

1 0...0︸︷︷︸
n−1

1 0...0︸︷︷︸
n−1

1

...

am = left endpoint of I0...0︸︷︷︸
n

1 0...0︸︷︷︸
n−1

1 0...0︸︷︷︸
n−1

1... 0...0︸︷︷︸
n−1

1

︸ ︷︷ ︸
m−1

.

am = h

(
1

2n+1
+

1

22n+1
+

1

23n+1
+ . . .

1

2mn+1

)
.
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A fixed point theorem for the dual conjugacy h̃

Theorem
Suppose f is a degree 2 circle endomorphism with bounded geometry that
preserves Lebesgue measure and f∗ is its dual circle endomorphism. Let h and
h∗ be circle homeomorphisms such that

f = h ◦ q2 ◦ h−1, f∗ = h∗ ◦ q2 ◦ (h∗)−1,

and
h̃ = h∗ ◦ h−1, f∗ = h̃ ◦ f ◦ h̃−1.

Then for all n,m ≥ 1, there is a fixed point

xn,m = h

(
m∑
i=1

1

2in+1

)
∈ Fix(h̃),

and for all n ≥ 1, there is a limit point of fixed points

xn = lim
m→∞

xn,m = h

(
∞∑
i=1

1

2in+1

)
= h

(
1

2(2n − 1)

)
∈ Fix(h̃).
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A fixed point corollary for the dual conjugacy h̃

Switching all 0’s to 1’s and all 1’s to 0’s...

Corollary

For all n,m ≥ 1, there is a fixed point

yn,m = h

(
1−

m∑
i=1

1

2in+1

)
∈ Fix(h̃),

and for all n ≥ 1, there is a limit point of fixed points

yn = lim
m→∞

yn,m = h

(
1−

∞∑
i=1

1

2in+1

)
= h

(
1− 1

2(2n − 1)

)
∈ Fix(h̃).
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

0 < C ≤ α ≤ τ < 1 is the ratio for how to partition I.

µ(I0) = αµ(I), µ(I1) = (1− α)µ(I)
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

α0 and α1 will be the ratios for how to partition I0 and I1, respectively.

Measure must be preserved.

BG must be satisfied.

0 < C ≤ α0, α1 ≤ τ < 1
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

+e -e

I

I0 I1

a (1-a)

µ(I00) = αµ(I0) + ε µ(I10) = αµ(I1)− ε
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

+e -e

I

I0 I1

a (1-a)

µ(I00) = αµ(I0) + ε := α0(I0) µ(I10) = αµ(I1)− ε := α1(I1)

⇒ α0 = α+
ε

µ1(I0)
⇒ α1 = α− ε

µ1(I1)
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

µ(I00) = α0(I0) µ(I10) = α1(I1)

µ(I01) = (1− α0)(I0) µ(I11) = (1− α1)(I1)
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

αωn will be the ratio for how to partition Iωn .

Measure must be preserved.

BG must be satisfied.
0 < C ≤ αωn ≤ τ < 1
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

C ≤ α00 = α0 +
ε0

µ(I00)
≤ τ, C ≤ α10 = α0 −

ε0
µ(I10)

≤ τ,

C ≤ α01 = α1 +
ε1

µ(I01)
≤ τ, C ≤ α11 = α1 −

ε1
µ(I11)

≤ τ.
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

+e0 -e0+e1 -e1

µ(I000) = α0µ(I00) + ε0 := α00µ(I00) µ(I100) = α0µ(I10)− ε0 := α10µ(I10)

⇒ α00 = α0 +
ε0

µ(I00)
⇒ α10 = α0 −

ε0
µ(I10)

µ(I010) = α1µ(I01) + ε1 := α01µ(I01) µ(I110) = α1µ(I11)− ε1 := α11µ(I11)

⇒ α01 = α1 +
ε1

µ(I01)
⇒ α11 = α1 −

ε1
µ(I11)
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

I000 I001 I010 I011 I100 I101I110 I111

a00 a01 a10 a11

αωn is the ratio for how to partition Iωn .

µ(Iωn0) = αωnµ(Iωn), µ(Iωn1) = (1− αωn)µ(Iωn)
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Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

I000 I001 I010 I011 I100 I101I110 I111

a00 a01 a10 a11

John Adamski



Algorithm for constructing a measure with BG and invariant w.r.t. q2

I

I0 I1

a (1-a)

a1 (1-a1)a0 (1-a0)

I00 I01 I10 I11

I000 I001 I010 I011 I100 I101I110 I111

a00 a01 a10 a11

+e00 -e00+e01 -e01+e10 -e10+e11 -e11

C ≤ α0ωn = αωn +
εωn

µ(I0ωn)
≤ τ, C ≤ α1ωn = αωn −

εωn

µ(I1ωn)
≤ τ.

−(aωn − C)µ(I0ωn) ≤ εωn ≤ (τ − αωn)µ(I1ωn)

−(τ − αωn)µ(I0ωn) ≤ εωn ≤ (aωn − C)µ(I1ωn).

John Adamski



Randomly generated circle endomorphism
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Figure: LEFT: distribution function h(x) = µ([0, x]) for a randomly generated measure
µ that is invariant w.r.t q2 and has BG with C = .1. RIGHT: f = h ◦ q2 ◦ h−1.
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αωn values cluster near C and τ

Scatter plots of αωn values above the midpoints of intervals Iωn,qd .
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Figure: C = .1, τ = .9.
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Figure: C = .3, τ = .7.

John Adamski



αωn values define a sequence of simple functions on dual symbolic space Σ∗

I A point ω ∈ Σ∗ is an infinite sequence ω∗ = . . . j2j1j0.

I A left-cylinder [ω∗n] ⊂ Σ of length n is the set of all points whose first n
terms (on the right) agree with ω∗.

I These generate the right topology and the Borel sigma algebra B∗

I Define a probability measure P ([ω∗n]) = |Iω∗
n
|.

I Define the right shift map σ∗ : Σ∗ → Σ∗

σ∗ : . . . j2j1j0 → . . . j2j1.

Define B∗n as the σ-algebra generated by all right-cylinders of length n, and

Xn(w∗) =
P ([σ∗(w∗n)])

P ([w∗n])
=
|Iσ∗(w∗

n)|
|Iw∗

n
| .

That is,

Xn+1(ω0∗) =
1

αωn

, Xn+1(ω1∗) =
1

1− αωn
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αωn values define a Martgingale on the dual symbolic space

Iwn

Iwn0I0wn I1wn

I0wn0 I1wn0

f

f

f

fX(0wn0) X(1wn0)

X(wn0) awn

a0wn a1wn

|I0ωn |+ |I1ωn | = |Iωn |

Xn+2(. . . 0ωn0)|I0ωn0|+Xn+2(. . . 0ωn0)|I0ωn0| = Xn+1(. . . ωn0)|Iωn0|
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αωn values define a convergent Martingale on S∗

Theorem
The sequence (Xn,B∗n) is a martingale on (Σ∗,B∗, P ). That is,

1. E[|Xn|] <∞ for all n ≥ 0.

2. Xn is B∗n-measurable for all n ≥ 1.

3. For all 1 ≤ m ≤ n, Xm = E[Xn|B∗m] P − a.e.,

Theorem
Suppose f : T → T is a circle endomorphism with bounded geometry that
preserves λ. Let

Xn(w∗) =
P ([σ∗(w∗n)])

P ([w∗n])
=
|Iσ∗(w∗

n)|
|Iw∗

n
| .

Then there exists a bounded B∗-measurable function X ∈ L1(P ) such that

1. limn→∞Xn = X(= Xf ) exists P − a.e.,
2. limn→∞

∫
Σ∗ |Xn −X| dP = 0, and

3. Xn = E[X|B∗n] P − a.e..
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Finite number of error terms

What if for some N ≥ 1, εωn = 0 for all n > N?

Definition
In this case we say f has finite Martingale.
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Figure: C = .1, τ = .9. εωn = 0 for all n > 4.

Theorem
Then f is piecewise linear.

Theorem
f has finite Martingale ⇐⇒ its Martingale converges to a simple function (i.e.
locally constant).
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Symmetric rigidity

Theorem (J)

Suppose f and g are both circle endomorphisms of the same topological degree
d ≥ 2 such that each has bounded geometry and preserves the Lebesgue
probability measure λ on T.

Suppose h is a symmetric conjugacy between f and g.

I If f = qd then h must be the identity.

Theorem

I If f has a Martingale with a locally constant limit then h must be the
identity.
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Outline of symmetric rigidity proof (1/2)

I symmetrically conjugate ⇒ same limits of Martingales

Xf (ω∗) = Xg(ω
∗), P − a.e.

I Both limits locally constant ⇒ (Xf,n) and (Xg,n) must be finite of length
n0

Xn,f (ω∗) = Xn,g(ω
∗) = c(ω∗n0

) ∀n ≥ n0.

I This implies

|Iwn0+m−1,f |
|Iωn0+m,f |

=
|F (Iwn0+m−1,f )|
|F (Iωn0+m,f )| ∀m ≥ 1,

⇒
|F (Iwn0+m,f )|
|Iωn0+m,f |

=
|F (Iwn0+m−1,f )|
|Iωn0+m−1,f |

= . . . =
|F (Iwn0 ,f

)|
|Iωn0 ,f

| := αwn0
.

I Thus f is piecewise linear

F |Iωn0
(x) = αωn0

x+ bωn0
.
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Outline of symmetric rigidity proof (2/2)

I Similarly, g is piecewise linear.

I Since (Xn,f ) = (Xn,g) for all n ≥ n0,

|H(Iwn0+m−1,f )|
|H(Iwn0+m,f )| =

|Iwn0+m−1,g |
|Iwn0+m,g |

=
|Iwn0+m−1,f |
|Iwn0+m,f |

.

I This implies

|H(Iwn0+m,f )|
|Iwn0+m,f |

=
|H(Iwn0+m−1,f )|
|Iwn0+m−1,f |

= . . . =
|H(Iwn0,f )|
|Iwn0 ,f

| := dwn0

I Thus
H(x) = dwn0

x+ en0 , ∀x ∈ Iwn0
.

I H is symmetric with H(0) = 0 and H(1) = 1 ⇒ H(x) = x.
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The end

Thank you very much!
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