Symmetric rigidity for circle endomorphisms with bounded geometry and their dual maps

John Adamski

The Graduate Center, CUNY

PhD thesis defense April 15th, 2020

Outline

- 1. Topological circle maps and definitions
 - 1.1 Circle homeomorphisms and endomorphisms
 - 1.2 Symmetry, quasisymmetry, and bounded geometry
- 2. Measure invariance and dual circle maps
 - 2.1 Dual partitions and dual circle endomorphisms
 - 2.2 A fixed point theorem for the dual conjugacy \tilde{h}
 - 2.3 A generating algorithm
- 3. Converging martingales on the dual symbolic space
 - 3.1 Locally constant limits of martingales and finite Martingales
 - 3.2 A symmetric rigidity theorem

Circle homeomorphisms

Let
$$\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$$
 and $\pi(x) = e^{2\pi i x} : \mathbb{R} \to \mathbb{T}$.

Definition

A circle homeomorphism is an orientation preserving homeomorphism $h:\mathbb{T}\to\mathbb{T}$ with lift $H:\mathbb{R}\to\mathbb{R}$ satisfying

$$\pi \circ H(x) = h \circ \pi(x)$$
, $H(x+1) = H(x) + 1$, $\forall x \in \mathbb{R}$.

We assume that $0 \le H(0) < 1$.

Types of circle homeomorphisms

h is quasisymmetric if $\exists M > 1$ such that

$$\frac{1}{M} \le \frac{H(x+t) - H(x)}{H(x) - H(x-t)} \le M , \ \forall x \in \mathbb{R} , \ \forall t > 0.$$

h is symmetric if $\exists \epsilon: \mathbb{R} \to \mathbb{R}$ such that $\epsilon(t) \to 0^+$ as $t \to 0^+$ and

$$\frac{1}{1+\epsilon(t)} \le \frac{H(x+t) - H(x)}{H(x) - H(x-t)} \le 1 + \epsilon(t) , \ \forall x \in \mathbb{R} , \ \forall t > 0.$$

Circle endomorphisms

Definition

A circle endomorphism is an orientation preserving covering map $f:\mathbb{T}\to\mathbb{T}$ of topological degree $d\geq 2$. We assume f(1)=1. The lift $F:\mathbb{R}\to\mathbb{R}$ satisfies

$$\pi \circ F(x) = f \circ \pi(x)$$
, $F(x+1) = F(x) + d$, $\forall x \in \mathbb{R}$.

We assume F(0) = 0.

Nested Markov partitions for circle endomorphisms

- $f^{-1}(1)$ creates $\xi_1 = \{J_0, J_1, \dots, J_{d-1}\}.$
- ▶ Lift to partition of [0,1], $\eta_1 = \{I_0, I_1, \dots, I_{d-1}\}$.
- ▶ Pull-back partitions: $\xi_n = f^{-(n-1)}(\xi_1)$.

$$\xi_n = \{ J_{\omega_n} \mid \omega_n = i_0 i_1 \dots i_{n-1}, \ i_k \in \{0, 1, \dots, d-1\}, \ 0 \le k \le d-1 \}.$$

$$f^k(J_{-k}) \in J_k \text{ for } 0 \le k \le n-1$$

$$f^k(J_{\omega_n}) \in J_{i_k} \text{ for } 0 \le k \le n-1$$

- $ightharpoonup I_{\omega_n}$ is the lift of J_{ω_n} to [0,1].
- ▶ Given $\{\eta_n\}_{n=1}^{\infty}$ and $0 < C \le \tau < 1$ with $C^n \le |I_{\omega_n}| \le \tau^n$, there is a unique circle endomorphism f that creates it.

Types of circle endomorphisms

Definition

1. f is uniformly quasisymmetric if $\exists M > 1$ such that

$$\frac{1}{M} \le \frac{F^{-n}(x+t) - F^{-n}(x)}{F^{-n}(x) - F^{-n}(x-t)} \le M , \ \forall x \in \mathbb{R} , \ \forall t > 0 , \ \forall n \ge 1.$$

2. f has bounded nearby geometry if $\exists M \geq 1$ such that $\forall n \geq 1$ and $\forall I, I' \in \eta_n$ that share an endpoint (modulo 1),

$$\frac{1}{M} \le \frac{|I'|}{|I|} \le M.$$

Theorem

(1)
$$\iff$$
 (2) \iff $f = h \circ q_d \circ h^{-1}$, h quasisymmetric.

Bounded geometry (weaker condition)

Definition

f has bounded geometry if $\exists 0 < C \leq \tau(C) < 1$ such that

$$C \le \frac{|L|}{|I|} < \tau, \quad \forall L \subset I, \ I \in \eta_n, \ L \in \eta_{n+1}, \ \forall n \ge 0.$$

Lemma

 $BNG \Rightarrow BG$.

Topological conjugacies

Any two circle endomorphisms f and g of the same degree $d \geq 2$ that both have **BG** are topologically conjugate.

$$f \circ h = h \circ g$$

If f and g both have **BNG** then h is quasisymmetric.

 \triangleright All circle endomorphisms f with **BG** are topologically conjugate to

$$q_d(z) = z^d, \qquad Q_d(x) = dx,$$

and semi-conjugate to the **left-shift map** $\sigma: \Sigma \to \Sigma$.

Symbolic space Σ (review)

$$\Sigma = \prod_{n=0}^{\infty} \{0, 1, \dots, d-1\}.$$

- ▶ A **point** $\omega \in \Sigma$ is an infinite sequence $\omega = i_0 i_1 i_2 \dots$
- ▶ A left-cylinder $[\omega_n] \subset \Sigma$ of length n is the set of all points whose first n terms agree with ω .
- ▶ The left-cylinders generate the **left topology**. The set Σ with the left topology is called the **symbolic space**.
- ▶ Then for a point $\omega = i_0 i_1 \ldots \in \Sigma$, we have

$$\Sigma \supset [\omega_1] \supset [\omega_2] \supset \cdots \supset [\omega_n] \supset \ldots,$$

just as

$$\mathbb{T}\supset J_{\omega_1}\supset J_{\omega_2}\supset\ldots\supset J_{\omega_n}\supset\ldots$$

Symbolic dynamical system (review)

We define the **projection** $\pi_f:\Sigma\to\mathbb{T}$ as

$$\pi_f(\omega) = J_\omega = \bigcap_{n=1}^\infty J_{\omega_n} = x_\omega,$$

and the **left shift map** $\sigma: \Sigma \to \Sigma$,

$$\sigma:i_0i_1i_2\cdots=i_1i_2\ldots.$$

 (Σ, σ) is called the **symbolic dynamical system**. It is the space of all **forward orbits** for the dynamical system (\mathbb{T}, f) .

Borel probability measures on ${\mathbb T}$

- ▶ Let $\mathbb{T} = [0,1]$ with $0 \sim 1$.
- ▶ Let \mathcal{B} denote the Borel σ -algebra of subsets of \mathbb{T} .
- ▶ $M(\mathbb{T})$ denotes the set of all Borel probability measures μ on \mathbb{T} .
- $ightharpoonup \lambda$ and $|\cdot|$ denote the Lebesgue probability measure on \mathbb{T} .
- Non-atomic measures $\mu \in M(\mathbb{T})$ with full support are in one to one correspondence with circle homeomorphisms h.

$$\begin{array}{ll} h(x) = \mu([0,x]), & \forall x \in \mathbb{R} \\ \mu(A) = \lambda(h(A)), & \forall A \in \mathcal{B}; \\ \end{array} \qquad \begin{array}{ll} \text{(distribution function)} \\ \mu(A) = \lambda(h(A)), & \forall A \in \mathcal{B}; \\ \end{array} \qquad \begin{array}{ll} \mu(A) = h^* \lambda \\ \end{array} \qquad \begin{array}{ll} \text{(pullback)} \end{array}$$

Invariant measures

Definition

The measure $\mu \in M(\mathbb{T})$ is invariant w.r.t. $f: \mathbb{T} \to \mathbb{T}$ if

$$\mu(f^{-1}(A)) = \mu(A), \quad \forall A \in \mathcal{B}.$$

Equivalently, let $f_*:M(\mathbb{T})\to M(\mathbb{T})$ such that

$$f_*(\mu)(A) = \mu(f^{-1}(A)), \quad \forall A \in \mathcal{B}(\mathbb{T}).$$
 (pushforward)

An invariant measure with respect to f is a fixed point of the map f_* .

Remark

Let h be circle homeomorphism and

$$\mu = h^* \lambda, \qquad f = h \circ \circ q_d \circ h^{-1}.$$

Then $\mu = h^* \lambda$ is invariant w.r.t. $q_d \iff \lambda$ is invariant w.r.t. $f = h \circ q_d \circ h^{-1}$.

Nested partitions for f with BG, preserve Lebesgue measure λ , d=2

Figure: Two directed d-nary trees (d=2). The dotted tree shows the preimages of each partition interval and the solid tree shows the subsets of each partition interval .

Two binary trees: Lebesgue measure λ preserved by both

Figure: Every interval I_{o_n} has two subintervals $I_{\omega_n 0}, I_{\omega_n 1} \in \eta_{n+1}$ and two preimage intervals $I_{0\omega_n}, I_{1\omega_n} \in \eta_{n+1}$.

Swapping forward paths and backward paths (1/3)

Figure: Since f preserves Lebesgue measure, the intervals of each partition η_n can be "shuffled" by swapping intervals whose labels are reversals of one another, and they still fit together as nested partitions. This is "untangling" the dotted tree.

Swapping forward paths and backwad paths (2/3)

Figure: Since f preserves Lebesgue measure, the intervals of each partition η_n can be "shuffled" by swapping intervals whose labels are reversals of one another, and they still fit together as nested partitions. This is "untangling" the dotted tree.

Swapping forward paths and backwad paths (3/3)

Figure: This yields a new sequence of nested partitions $\{\eta_n^*\}_{n=1}^\infty$ which defines a new circle endomorphism f^* that we call the **dual circle endomorphism**.

The dual conjugacy \tilde{h}

The circle endomorphism $f=h\circ q_d\circ h^{-1}$ and the dual circle endomorphism $f^*=h^*\circ q_d\circ (h^*)^{-1}$ are topologically conjugate.

$$f^* = \tilde{h} \circ f \circ \tilde{h}^{-1}$$
$$\tilde{h} = h^* \circ h^{-1}$$

Randomly generated dual circle endomorphisms and their dual conjugacy

Figure: C=.1. LEFT: blue is h, red is h^* , black is $\tilde{h}=h^*\circ h^{-1}$. RIGHT: blue is $f=h\circ q_2\circ h^{-1}$, red is $f^*=h^*\circ q_2\circ (h^*)^{-1}$.

Properties of \tilde{h} , d=2

- ▶ $\forall n \geq 0$, \tilde{h} sends endpoints of intervals in η_n to the endpoints of intervals in η_n^* , preserving their order.
- ▶ I_0 and I_1 do not move $\Rightarrow h(0) = 0$, h(1/2), and h(1) = 1 are fixed points.
- ► Furthermore,

$$|I_0| = |I_{00}| + |I_{10}| = |I_{00}| + |I_{01}|$$

 $\Rightarrow |I_{01}| = |I_{10}|$

▶ There exist many fixed point of \tilde{h} .

Properties of \tilde{h} , d=2

More generally, when subsets are also preimages and one endpoint is fixed,

$$\begin{split} |I_{\underbrace{0...0}_{n-1}}| &= |I_{\underbrace{0...0}_{n-1}}| + |I_{\underbrace{1.0...0}_{n-1}}| = |I_{\underbrace{0...0}_{n-1}}| + |I_{\underbrace{0...0}_{n-1}}| \\ &\Rightarrow |I_{\underbrace{1...1}_{n-1}}| = |I_{\underbrace{0...0}_{n-1}}|, \text{ and} \\ |I_{\underbrace{1...1}_{n-1}}| &= |I_{\underbrace{0...1}_{n-1}}| + |I_{\underbrace{1...1}_{n-1}}| = |I_{\underbrace{1...1}_{n-1}}| + |I_{\underbrace{1...1}_{n-1}}| \\ &\Rightarrow |I_{\underbrace{0...1}_{n-1}}| = |I_{\underbrace{1...1}_{n-1}}|. \end{split}$$

That is,

$$\operatorname{Fix}(\tilde{h}) \supseteq \left\{ h\left(\frac{1}{2^n}\right), h\left(\frac{1}{2} \pm \frac{1}{2^n}\right), h\left(1 - \frac{1}{2^n}\right) \middle| 1 \le n \le N \right\}.$$

More fixed points of \tilde{h}

• for any $n \ge 1$, the endpoints of the interval

$$I_{\underbrace{0...0}_{n}}$$

are fixed by \tilde{h} . Let a_1 denote the left endpoint of this interval (fixed).

Now consider the interval

$$I_{\underbrace{0\ldots 0}_n} {\scriptstyle 1} \underbrace{0\ldots 0}_n.$$

Note that the label of this interval is a palindrome \Rightarrow its length is preserved \Rightarrow its right endpoint a_2 is fixed.

Note:

$$a_2 = \text{left endpoint of } I_{\underbrace{0\dots0}_n} \underset{n-1}{1} \underbrace{0\dots0}_{n-1} 1.$$

More fixed points of \tilde{h}

Figure: The increasing sequence $\{a_m\}_{m=1}^{\infty}$ of fixed points of $\tilde{h},$ constructed with n=2.

More fixed points of $\tilde{\boldsymbol{h}}$

In this way, define

$$\begin{split} a_3 &= \text{left endpoint of } I_{\underbrace{0...0}_{n}} \underbrace{1}_{\underbrace{0...0}_{n-1}} \underbrace{1}_{\underbrace{0...0}_{n$$

A fixed point theorem for the dual conjugacy \tilde{h}

Theorem

Suppose f is a degree 2 circle endomorphism with bounded geometry that preserves Lebesgue measure and f^* is its dual circle endomorphism. Let h and h^* be circle homeomorphisms such that

$$f = h \circ q_2 \circ h - 1,$$
 $f^* = h^* \circ q_2 \circ (h^*)^{-1},$

and

$$\tilde{h} = h^* \circ h^{-1}, \qquad f^* = \tilde{h} \circ f \circ \tilde{h}^{-1}.$$

Then for all $n, m \ge 1$, there is a fixed point

$$x_{n,m} = h\left(\sum_{i=1}^{m} \frac{1}{2^{in+1}}\right) \in \operatorname{Fix}(\tilde{h}),$$

and for all $n \ge 1$, there is a limit point of fixed points

$$x_n = \lim_{m \to \infty} x_{n,m} = h\left(\sum_{i=1}^{\infty} \frac{1}{2^{in+1}}\right) = h\left(\frac{1}{2(2^n - 1)}\right) \in \overline{\operatorname{Fix}(\tilde{h})}.$$

A fixed point corollary for the dual conjugacy \tilde{h}

Switching all 0's to 1's and all 1's to 0's...

Corollary

For all $n, m \ge 1$, there is a fixed point

$$y_{n,m} = h\left(1 - \sum_{i=1}^{m} \frac{1}{2^{in+1}}\right) \in \operatorname{Fix}(\tilde{h}),$$

and for all $n \ge 1$, there is a limit point of fixed points

$$y_n = \lim_{m \to \infty} y_{n,m} = h\left(1 - \sum_{i=1}^{\infty} \frac{1}{2^{in+1}}\right) = h\left(1 - \frac{1}{2(2^n - 1)}\right) \in \overline{\text{Fix}(\tilde{h})}.$$

 $0 < C \leq \alpha \leq \tau < 1$ is the ratio for how to partition I.

$$\mu(I_0) = \alpha \mu(I), \quad \mu(I_1) = (1 - \alpha)\mu(I)$$

 α_0 and α_1 will be the ratios for how to partition I_0 and I_1 , respectively.

Measure must be preserved.

BG must be satisfied.

$$0 < C \le \alpha_0, \alpha_1 \le \tau < 1$$

$$\mu(I_{00}) = \alpha \mu(I_0) + \epsilon := \alpha_0(I_0) \qquad \qquad \mu(I_{10}) = \alpha \mu(I_1) - \epsilon := \alpha_1(I_1)$$

$$\Rightarrow \alpha_0 = \alpha + \frac{\epsilon}{\mu_1(I_0)} \qquad \qquad \Rightarrow \alpha_1 = \alpha - \frac{\epsilon}{\mu_1(I_1)}$$

$$\mu(I_{00}) = \alpha_0(I_0) \qquad \qquad \mu(I_{10}) = \alpha_1(I_1)$$

$$\mu(I_{01}) = (1 - \alpha_0)(I_0) \qquad \qquad \mu(I_{11}) = (1 - \alpha_1)(I_1)$$

 α_{ω_n} will be the ratio for how to partition $I_{\omega_n}.$

Measure must be preserved.

BG must be satisfied.

$$0 < C \leq \alpha_{\omega_n} \leq \tau < 1$$

$$C \le \alpha_{00} = \alpha_0 + \frac{\epsilon_0}{\mu(I_{00})} \le \tau, \qquad C \le \alpha_{10} = \alpha_0 - \frac{\epsilon_0}{\mu(I_{10})} \le \tau,$$
 $C \le \alpha_{01} = \alpha_1 + \frac{\epsilon_1}{\mu(I_{01})} \le \tau, \qquad C \le \alpha_{11} = \alpha_1 - \frac{\epsilon_1}{\mu(I_{11})} \le \tau.$

$$\mu(I_{000}) = \alpha_0 \mu(I_{00}) + \epsilon_0 := \alpha_{00} \mu(I_{00})$$

$$\Rightarrow \alpha_{00} = \alpha_0 + \frac{\epsilon_0}{\mu(I_{00})}$$

$$\mu(I_{010}) = \alpha_1 \mu(I_{01}) + \epsilon_1 := \alpha_{01} \mu(I_{01})$$

$$\Rightarrow \alpha_{01} = \alpha_1 + \frac{\epsilon_1}{\mu(I_{01})}$$

$$\mu(I_{100}) = \alpha_0 \mu(I_{10}) - \epsilon_0 := \alpha_{10} \mu(I_{10})$$

$$\Rightarrow \alpha_{10} = \alpha_0 - \frac{\epsilon_0}{\mu(I_{10})}$$

$$\mu(I_{110}) = \alpha_1 \mu(I_{11}) - \epsilon_1 := \alpha_{11} \mu(I_{11})$$

$$\Rightarrow \alpha_{11} = \alpha_1 - \frac{\epsilon_1}{\mu(I_{11})}$$

 α_{ω_n} is the ratio for how to partition I_{ω_n} .

$$\mu(I_{\omega_n 0}) = \alpha_{\omega_n} \mu(I_{\omega_n}), \quad \mu(I_{\omega_n 1}) = (1 - \alpha_{\omega_n}) \mu(I_{\omega_n})$$

Algorithm for constructing a measure with BG and invariant w.r.t. $\it{q}_{\rm{2}}$

Algorithm for constructing a measure with BG and invariant w.r.t. $\it{q}_{\rm{2}}$

Randomly generated circle endomorphism

Figure: LEFT: distribution function $h(x)=\mu([0,x])$ for a randomly generated measure μ that is invariant w.r.t q_2 and has BG with C=.1. RIGHT: $f=h\circ q_2\circ h^{-1}$.

α_{ω_n} values cluster near C and au

Scatter plots of α_{ω_n} values above the midpoints of intervals $I_{\omega_n,q_d}.$

Figure: C = .1, $\tau = .9$.

Figure: C = .3, $\tau = .7$.

- ▶ A **point** $\omega \in \Sigma^*$ is an infinite sequence $\omega^* = \dots j_2 j_1 j_0$.
- ▶ A left-cylinder $[\omega_n^*] \subset \Sigma$ of length n is the set of all points whose first n terms (on the right) agree with ω^* .
- ightharpoonup These generate the **right topology** and the Borel sigma algebra \mathcal{B}^*
- ▶ Define a probability measure $P([\omega_n^*]) = |I_{\omega_n^*}|$.
- ▶ Define the **right shift map** $\sigma^* : \Sigma^* \to \Sigma^*$

$$\sigma^*:\ldots j_2j_1j_0\to\ldots j_2j_1.$$

Define \mathcal{B}_n^* as the σ -algebra generated by all right-cylinders of length n, and

$$X_n(w^*) = \frac{P([\sigma^*(w_n^*)])}{P([w_n^*])} = \frac{|I_{\sigma^*(w_n^*)}|}{|I_{w_n^*}|}.$$

That is,

$$X_{n+1}(\omega 0^*) = \frac{1}{\alpha_{\omega_n}}, \qquad X_{n+1}(\omega 1^*) = \frac{1}{1 - \alpha_{\omega_n}}$$

$lpha_{\omega_n}$ values define a Martgingale on the dual symbolic space

$$|I_{0\omega_n}| + |I_{1\omega_n}| = |I_{\omega_n}|$$

$$X_{n+2}(\dots 0\omega_n 0)|I_{0\omega_n 0}| + X_{n+2}(\dots 0\omega_n 0)|I_{0\omega_n 0}| = X_{n+1}(\dots \omega_n 0)|I_{\omega_n 0}|$$

Theorem

The sequence (X_n, \mathcal{B}_n^*) is a martingale on $(\Sigma^*, \mathcal{B}^*, P)$. That is,

- 1. $E[|X_n|] < \infty$ for all $n \ge 0$.
- 2. X_n is \mathcal{B}_n^* -measurable for all $n \geq 1$.
- 3. For all $1 \leq m \leq n$, $X_m = E[X_n | \mathcal{B}_m^*] P a.e.$,

Theorem

Suppose $f:T\to T$ is a circle endomorphism with bounded geometry that preserves λ . Let

$$X_n(w^*) = \frac{P([\sigma^*(w_n^*)])}{P([w_n^*])} = \frac{|I_{\sigma^*(w_n^*)}|}{|I_{w_n^*}|}.$$

Then there exists a bounded \mathcal{B}^* -measurable function $X \in L^1(P)$ such that

- 1. $\lim_{n\to\infty} X_n = X(=X_f)$ exists P-a.e.,
- 2. $\lim_{n\to\infty}\int_{\Sigma^*}|X_n-X|\ dP=0$, and
- 3. $X_n = E[X|\mathcal{B}_n^*] P a.e.$

Finite number of error terms

What if for some $N \geq 1$, $\epsilon_{\omega_n} = 0$ for all n > N?

Definition

In this case we say f has **finite Martingale**.

Figure: C=.1, $\tau=.9$. $\epsilon_{\omega_n}=0$ for all n>4.

Theorem

Then f is piecewise linear.

Theorem

f has finite Martingale \iff its Martingale converges to a simple function (i.e. locally constant).

Symmetric rigidity

Theorem (J)

Suppose f and g are both circle endomorphisms of the same topological degree $d \geq 2$ such that each has bounded geometry and preserves the Lebesgue probability measure λ on \mathbb{T} .

Suppose h is a symmetric conjugacy between f and g.

▶ If $f = q_d$ then h must be the identity.

Theorem

▶ If f has a Martingale with a locally constant limit then h must be the identity.

Outline of symmetric rigidity proof (1/2)

▶ symmetrically conjugate ⇒ same limits of Martingales

$$X_f(\omega^*) = X_g(\omega^*), \quad P - a.e.$$

▶ Both limits locally constant \Rightarrow $(X_{f,n})$ and $(X_{g,n})$ must be finite of length n_0

$$X_{n,f}(\omega^*) = X_{n,g}(\omega^*) = c(\omega_{n_0}^*) \quad \forall n \ge n_0.$$

This implies

$$\frac{|I_{w_{n_0+m-1},f}|}{|I_{\omega_{n_0+m},f}|} = \frac{|F(I_{w_{n_0+m-1},f})|}{|F(I_{\omega_{n_0+m},f})|} \quad \forall m \ge 1,$$

$$+m,f) \quad |F(I_{w_{n_0+m-1},f})| \quad |F(I_{w_{n_0},f})|$$

$$\Rightarrow \frac{|F(I_{w_{n_0+m},f})|}{|I_{\omega_{n_0+m},f}|} = \frac{|F(I_{w_{n_0+m-1},f})|}{|I_{\omega_{n_0+m-1},f}|} = \dots = \frac{|F(I_{w_{n_0},f})|}{|I_{\omega_{n_0},f}|} := \alpha_{w_{n_0}}.$$

► Thus *f* is piecewise linear

$$F|_{I_{\omega_{n_0}}}(x) = \alpha_{\omega_{n_0}} x + b_{\omega_{n_0}}.$$

Outline of symmetric rigidity proof (2/2)

- ► Similarly, *g* is piecewise linear.
- ▶ Since $(X_{n,f}) = (X_{n,g})$ for all $n \ge n_0$,

$$\frac{|H(I_{w_{n_0+m-1,f}})|}{|H(I_{w_{n_0+m,f}})|} = \frac{|I_{w_{n_0+m-1,g}}|}{|I_{w_{n_0+m,g}}|} = \frac{|I_{w_{n_0+m-1,f}}|}{|I_{w_{n_0+m,f}}|}.$$

This implies

$$\frac{|H(I_{w_{n_0+m,f}})|}{|I_{w_{n_0+m,f}}|} = \frac{|H(I_{w_{n_0+m-1,f}})|}{|I_{w_{n_0+m-1,f}}|} = \dots = \frac{|H(I_{w_{n_0,f}})|}{|I_{w_{n_0,f}}|} := d_{w_{n_0}}$$

► Thus

$$H(x) = d_{w_{n_0}} x + e_{n_0}, \quad \forall x \in I_{w_{n_0}}.$$

▶ H is symmetric with H(0) = 0 and $H(1) = 1 \Rightarrow H(x) = x$.

The end

Thank you very much!