Symmetric rigidity for circle endomorphisms with bounded geometry and their dual maps

John Adamski

The Graduate Center, CUNY

PhD thesis defense
April 15th, 2020

Outline

1. Topological circle maps and definitions
1.1 Circle homeomorphisms and endomorphisms
1.2 Symmetry, quasisymmetry, and bounded geometry
2. Measure invariance and dual circle maps
2.1 Dual partitions and dual circle endomorphisms
2.2 A fixed point theorem for the dual conjugacy \tilde{h}
2.3 A generating algorithm
3. Converging martingales on the dual symbolic space
3.1 Locally constant limits of martingales and finite Martingales
3.2 A symmetric rigidity theorem

Circle homeomorphisms

Let $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ and $\pi(x)=e^{2 \pi i x}: \mathbb{R} \rightarrow \mathbb{T}$.
Definition
A circle homeomorphism is an orientation preserving homeomorphism $h: \mathbb{T} \rightarrow \mathbb{T}$ with lift $H: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\pi \circ H(x)=h \circ \pi(x), H(x+1)=H(x)+1, \forall x \in \mathbb{R} .
$$

We assume that $0 \leq H(0)<1$.

Types of circle homeomorphisms

h is quasisymmetric if $\exists M>1$ such that

$$
\frac{1}{M} \leq \frac{H(x+t)-H(x)}{H(x)-H(x-t)} \leq M, \forall x \in \mathbb{R}, \forall t>0
$$

h is symmetric if $\exists \epsilon: \mathbb{R} \rightarrow \mathbb{R}$ such that $\epsilon(t) \rightarrow 0^{+}$as $t \rightarrow 0^{+}$and

$$
\frac{1}{1+\epsilon(t)} \leq \frac{H(x+t)-H(x)}{H(x)-H(x-t)} \leq 1+\epsilon(t), \forall x \in \mathbb{R}, \forall t>0
$$

Circle endomorphisms

Definition

A circle endomorphism is an orientation preserving covering map $f: \mathbb{T} \rightarrow \mathbb{T}$ of topological degree $d \geq 2$. We assume $f(1)=1$. The lift $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\pi \circ F(x)=f \circ \pi(x), F(x+1)=F(x)+d, \forall x \in \mathbb{R}
$$

We assume $F(0)=0$.

Nested Markov partitions for circle endomorphisms

- $f^{-1}(1)$ creates $\xi_{1}=\left\{J_{0}, J_{1}, \ldots, J_{d-1}\right\}$.
- Lift to partition of $[0,1], \eta_{1}=\left\{I_{0}, I_{1}, \ldots, I_{d-1}\right\}$.
- Pull-back partitions: $\xi_{n}=f^{-(n-1)}\left(\xi_{1}\right)$.

$$
\begin{gathered}
\xi_{n}=\left\{J_{\omega_{n}} \mid \omega_{n}=i_{0} i_{1} \ldots i_{n-1}, i_{k} \in\{0,1, \ldots, d-1\}, 0 \leq k \leq d-1\right\} . \\
f^{k}\left(J_{\omega_{n}}\right) \in J_{i_{k}} \text { for } 0 \leq k \leq n-1
\end{gathered}
$$

- $I_{\omega_{n}}$ is the lift of $J_{\omega_{n}}$ to $[0,1]$.
- Given $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ and $0<C \leq \tau<1$ with $C^{n} \leq\left|I_{\omega_{n}}\right| \leq \tau^{n}$, there is a unique circle endomorphism f that creates it.

Types of circle endomorphisms

Definition

1. f is uniformly quasisymmetric if $\exists M>1$ such that

$$
\frac{1}{M} \leq \frac{F^{-n}(x+t)-F^{-n}(x)}{F^{-n}(x)-F^{-n}(x-t)} \leq M, \forall x \in \mathbb{R}, \forall t>0, \forall n \geq 1 .
$$

2. f has bounded nearby geometry if $\exists M \geq 1$ such that $\forall n \geq 1$ and $\forall I, I^{\prime} \in \eta_{n}$ that share an endpoint (modulo 1),

$$
\frac{1}{M} \leq \frac{\left|I^{\prime}\right|}{|I|} \leq M
$$

Theorem
(1) \Longleftrightarrow (2) $\Longleftrightarrow f=h \circ q_{d} \circ h^{-1}, h$ quasisymmetric.

Bounded geometry (weaker condition)

Definition

f has bounded geometry if $\exists 0<C \leq \tau(C)<1$ such that

$$
C \leq \frac{|L|}{|I|}<\tau, \quad \forall L \subset I, I \in \eta_{n}, L \in \eta_{n+1}, \forall n \geq 0
$$

Lemma
$B N G \Rightarrow B G$.

Topological conjugacies

- Any two circle endomorphisms f and g of the same degree $d \geq 2$ that both have BG are topologically conjugate.

$$
f \circ h=h \circ g
$$

If f and g both have BNG then h is quasisymmetric.

- All circle endomorphisms f with $\mathbf{B G}$ are topologically conjugate to

$$
q_{d}(z)=z^{d}, \quad Q_{d}(x)=d x
$$

and semi-conjugate to the left-shift map $\sigma: \Sigma \rightarrow \Sigma$.

Symbolic space Σ (review)

$$
\Sigma=\prod_{n=0}^{\infty}\{0,1, \ldots, d-1\}
$$

- A point $\omega \in \Sigma$ is an infinite sequence $\omega=i_{0} i_{1} i_{2} \ldots$
- A left-cylinder $\left[\omega_{n}\right] \subset \Sigma$ of length n is the set of all points whose first n terms agree with ω.
- The left-cylinders generate the left topology. The set Σ with the left topology is called the symbolic space.
- Then for a point $\omega=i_{0} i_{1} \ldots \in \Sigma$, we have

$$
\Sigma \supset\left[\omega_{1}\right] \supset\left[\omega_{2}\right] \supset \cdots \supset\left[\omega_{n}\right] \supset \ldots
$$

just as

$$
\mathbb{T} \supset J_{\omega_{1}} \supset J_{\omega_{2}} \supset \ldots \supset J_{\omega_{n}} \supset \ldots
$$

Symbolic dynamical system (review)

We define the projection $\pi_{f}: \Sigma \rightarrow \mathbb{T}$ as

$$
\pi_{f}(\omega)=J_{\omega}=\cap_{n=1}^{\infty} J_{\omega_{n}}=x_{\omega}
$$

and the left shift map $\sigma: \Sigma \rightarrow \Sigma$,

$$
\sigma: i_{0} i_{1} i_{2} \cdots=i_{1} i_{2} \ldots
$$

(Σ, σ) is called the symbolic dynamical system. It is the space of all forward orbits for the dynamical system (\mathbb{T}, f).

Borel probability measures on \mathbb{T}

- Let $\mathbb{T}=[0,1]$ with $0 \sim 1$.
- Let \mathcal{B} denote the Borel σ-algebra of subsets of \mathbb{T}.
- $M(\mathbb{T})$ denotes the set of all Borel probability measures μ on \mathbb{T}.
- λ and $|\cdot|$ denote the Lebesgue probability measure on \mathbb{T}.
- Non-atomic measures $\mu \in M(\mathbb{T})$ with full support are in one to one correspondence with circle homeomorphisms h.

$$
\begin{array}{rlrr}
h(x)=\mu([0, x]), & \forall x \in \mathbb{R} & \text { (distribution function) } \\
\mu(A)=\lambda(h(A)), & \forall A \in \mathcal{B} ; & \mu=h^{*} \lambda & \text { (pullback) }
\end{array}
$$

Invariant measures

Definition

The measure $\mu \in M(\mathbb{T})$ is invariant w.r.t. $f: \mathbb{T} \rightarrow \mathbb{T}$ if

$$
\mu\left(f^{-1}(A)\right)=\mu(A), \quad \forall A \in \mathcal{B} .
$$

Equivalently, let $f_{*}: M(\mathbb{T}) \rightarrow M(\mathbb{T})$ such that

$$
f_{*}(\mu)(A)=\mu\left(f^{-1}(A)\right), \quad \forall A \in \mathcal{B}(\mathbb{T})
$$

An invariant measure with respect to f is a fixed point of the map f_{*}.

Remark

Let h be circle homeomorphism and

$$
\mu=h^{*} \lambda, \quad f=h \circ \circ q_{d} \circ h^{-1} .
$$

Then $\mu=h^{*} \lambda$ is invariant w.r.t. $q_{d} \Longleftrightarrow \lambda$ is invariant w.r.t. $f=h \circ q_{d} \circ h^{-1}$.

Nested partitions for f with BG, preserve Lebesgue measure $\lambda, d=2$

Figure: Two directed d-nary trees $(d=2)$. The dotted tree shows the preimages of each partition interval and the solid tree shows the subsets of each partition interval.

Two binary trees: Lebesgue measure λ preserved by both

Figure: Every interval $I_{o_{n}}$ has two subintervals $I_{\omega_{n} 0}, I_{\omega_{n} 1} \in \eta_{n+1}$ and two preimage intervals $I_{0 \omega_{n}}, I_{1 \omega_{n}} \in \eta_{n+1}$.

Swapping forward paths and backward paths (1/3)

Figure: Since f preserves Lebesgue measure, the intervals of each partition η_{n} can be "shuffled" by swapping intervals whose labels are reversals of one another, and they still fit together as nested partitions. This is "untangling" the dotted tree.

Swapping forward paths and backwad paths (2/3)

Figure: Since f preserves Lebesgue measure, the intervals of each partition η_{n} can be "shuffled" by swapping intervals whose labels are reversals of one another, and they still fit together as nested partitions. This is "untangling" the dotted tree.

Swapping forward paths and backwad paths (3/3)

Figure: This yields a new sequence of nested partitions $\left\{\eta_{n}^{*}\right\}_{n=1}^{\infty}$ which defines a new circle endomorphism f^{*} that we call the dual circle endomorphism.

The dual conjugacy \tilde{h}

The circle endomorphism $f=h \circ q_{d} \circ h^{-1}$ and the dual circle endomorphism $f^{*}=h^{*} \circ q_{d} \circ\left(h^{*}\right)^{-1}$ are topologically conjugate.

$$
\begin{aligned}
f^{*} & =\tilde{h} \circ f \circ \tilde{h}^{-1} \\
\tilde{h} & =h^{*} \circ h^{-1}
\end{aligned}
$$

Randomly generated dual circle endomorphisms and their dual conjugacy

Figure: $C=.1$. LEFT: blue is h, red is h^{*}, black is $\tilde{h}=h^{*} \circ h^{-1}$. RIGHT: blue is $f=h \circ q_{2} \circ h^{-1}$, red is $f^{*}=h^{*} \circ q_{2} \circ\left(h^{*}\right)^{-1}$.

- $\forall n \geq 0, \tilde{h}$ sends endpoints of intervals in η_{n} to the endpoints of intervals in η_{n}^{*}, preserving their order.
- I_{0} and I_{1} do not move $\Rightarrow h(0)=0, h(1 / 2)$, and $h(1)=1$ are fixed points.
- Furthermore,

$$
\begin{gathered}
\left|I_{0}\right|=\left|I_{00}\right|+\left|I_{10}\right|=\left|I_{00}\right|+\left|I_{01}\right| \\
\Rightarrow\left|I_{01}\right|=\left|I_{10}\right|
\end{gathered}
$$

- There exist many fixed point of \tilde{h}.

Properties of $\tilde{h}, d=2$

More generally, when subsets are also preimages and one endpoint is fixed,

$$
\begin{aligned}
& \left|I_{n-1}^{I_{n 0}}\right|=|I_{0} \underbrace{0 \ldots 0}_{n-1}|+|I_{1} \underbrace{0 \ldots 0}_{n-1}|=\left|I_{n-1}^{0 \ldots 0} 0\right|+\left|I_{n-1}^{0 \ldots 0} 1\right| \\
& \Rightarrow|I_{1} \underbrace{0 \ldots 0}_{n-1}|=\left|I_{n-1}^{0 \ldots 0} 1\right| \text {, and } \\
& \left|I_{n-1}^{I_{n}}\right|=|I_{0} \underbrace{1 \ldots 1}_{n-1}|+|I_{1} \underbrace{1 \ldots 1}_{n-1}|=\left|I_{n-1}^{1 \ldots 1} 0\right|+|\underbrace{1 \ldots 1}_{n-1} 1| \\
& \Rightarrow|I_{0} \underbrace{1 \ldots 1}_{n-1}|=|\underbrace{1 \ldots 1}_{n-1}{ }_{0}| \text {. }
\end{aligned}
$$

That is,

$$
\operatorname{Fix}(\tilde{h}) \supseteq\left\{h\left(\frac{1}{2^{n}}\right), h\left(\frac{1}{2} \pm \frac{1}{2^{n}}\right), \left.h\left(1-\frac{1}{2^{n}}\right) \right\rvert\, 1 \leq n \leq N\right\}
$$

More fixed points of \tilde{h}

- for any $n \geq 1$, the endpoints of the interval

$$
I_{\underbrace{0 \ldots 0}_{n}}^{0} 1
$$

are fixed by \tilde{h}. Let a_{1} denote the left endpoint of this interval (fixed).

- Now consider the interval

Note that the label of this interval is a palindrome \Rightarrow its length is preserved \Rightarrow its right endpoint a_{2} is fixed.

- Note:

$$
a_{2}=\text { left endpoint of } \underbrace{I_{n} \ldots 0}_{n} 1 \underbrace{0 \ldots 0}_{n-1} 1 \text {. }
$$

More fixed points of \tilde{h}

Figure: The increasing sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ of fixed points of \tilde{h}, constructed with $n=2$.

More fixed points of \tilde{h}

In this way, define

$$
\left.\begin{array}{rl}
a_{3} & =\text { left endpoint of } I_{\underbrace{0 \ldots 0}_{n}}^{\underbrace{}_{n}} \underbrace{0 \ldots 0}_{n-1} \underbrace{0 \ldots 0}_{n-1} 1 \\
a_{4} & =\text { left endpoint of } I_{\underbrace{0 \ldots 0}_{n}}^{0_{n}} \underbrace{0 \ldots 0}_{n-1} 1 \underbrace{0 \ldots 0}_{n-1} 1 \underbrace{0 \ldots 0}_{n-1} 1 \\
\vdots \\
a_{m} & =\text { left endpoint of } \underbrace{0^{0}}_{\underbrace{0 \ldots 0}_{n}} \underbrace{\underbrace{0 \ldots 0}_{n-1}}_{\underbrace{0 \ldots 0}_{m-1}} 1 \ldots \underbrace{0 \ldots 0}_{n-1} \\
1
\end{array}\right] .
$$

A fixed point theorem for the dual conjugacy \tilde{h}

Theorem

Suppose f is a degree 2 circle endomorphism with bounded geometry that preserves Lebesgue measure and f^{*} is its dual circle endomorphism. Let h and h^{*} be circle homeomorphisms such that

$$
f=h \circ q_{2} \circ h-1, \quad f^{*}=h^{*} \circ q_{2} \circ\left(h^{*}\right)^{-1}
$$

and

$$
\tilde{h}=h^{*} \circ h^{-1}, \quad f^{*}=\tilde{h} \circ f \circ \tilde{h}^{-1} .
$$

Then for all $n, m \geq 1$, there is a fixed point

$$
x_{n, m}=h\left(\sum_{i=1}^{m} \frac{1}{2^{i n+1}}\right) \in \operatorname{Fix}(\tilde{h})
$$

and for all $n \geq 1$, there is a limit point of fixed points

$$
x_{n}=\lim _{m \rightarrow \infty} x_{n, m}=h\left(\sum_{i=1}^{\infty} \frac{1}{2^{i n+1}}\right)=h\left(\frac{1}{2\left(2^{n}-1\right)}\right) \in \overline{\operatorname{Fix}(\tilde{h})}
$$

A fixed point corollary for the dual conjugacy \tilde{h}

Switching all 0's to 1's and all 1's to 0's...
Corollary
For all $n, m \geq 1$, there is a fixed point

$$
y_{n, m}=h\left(1-\sum_{i=1}^{m} \frac{1}{2^{i n+1}}\right) \in \operatorname{Fix}(\tilde{h}),
$$

and for all $n \geq 1$, there is a limit point of fixed points

$$
y_{n}=\lim _{m \rightarrow \infty} y_{n, m}=h\left(1-\sum_{i=1}^{\infty} \frac{1}{2^{i n+1}}\right)=h\left(1-\frac{1}{2\left(2^{n}-1\right)}\right) \in \overline{\operatorname{Fix}(\tilde{h})}
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

$0<C \leq \alpha \leq \tau<1$ is the ratio for how to partition I.

$$
\mu\left(I_{0}\right)=\alpha \mu(I), \quad \mu\left(I_{1}\right)=(1-\alpha) \mu(I)
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

α_{0} and α_{1} will be the ratios for how to partition I_{0} and I_{1}, respectively.
Measure must be preserved.
BG must be satisfied.

$$
0<C \leq \alpha_{0}, \alpha_{1} \leq \tau<1
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

$$
\begin{aligned}
& \mu\left(I_{00}\right)=\alpha_{0}\left(I_{0}\right) \\
& \mu\left(I_{01}\right)=\left(1-\alpha_{0}\right)\left(I_{0}\right)
\end{aligned}
$$

$$
\mu\left(I_{10}\right)=\alpha_{1}\left(I_{1}\right)
$$

$$
\mu\left(I_{11}\right)=\left(1-\alpha_{1}\right)\left(I_{1}\right)
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

$\alpha_{\omega_{n}}$ will be the ratio for how to partition $I_{\omega_{n}}$.
Measure must be preserved.
BG must be satisfied.

$$
0<C \leq \alpha_{\omega_{n}} \leq \tau<1
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

$$
\begin{array}{ll}
C \leq \alpha_{00}=\alpha_{0}+\frac{\epsilon_{0}}{\mu\left(I_{00}\right)} \leq \tau, & C \leq \alpha_{10}=\alpha_{0}-\frac{\epsilon_{0}}{\mu\left(I_{10}\right)} \leq \tau \\
C \leq \alpha_{01}=\alpha_{1}+\frac{\epsilon_{1}}{\mu\left(I_{01}\right)} \leq \tau, & C \leq \alpha_{11}=\alpha_{1}-\frac{\epsilon_{1}}{\mu\left(I_{11}\right)} \leq \tau
\end{array}
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

$\alpha_{\omega_{n}}$ is the ratio for how to partition $I_{\omega_{n}}$.

$$
\mu\left(I_{\omega_{n} 0}\right)=\alpha_{\omega_{n}} \mu\left(I_{\omega_{n}}\right), \quad \mu\left(I_{\omega_{n} 1}\right)=\left(1-\alpha_{\omega_{n}}\right) \mu\left(I_{\omega_{n}}\right)
$$

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

Algorithm for constructing a measure with BG and invariant w.r.t. q_{2}

Randomly generated circle endomorphism

Figure: LEFT: distribution function $h(x)=\mu([0, x])$ for a randomly generated measure μ that is invariant w.r.t q_{2} and has BG with $C=.1$. RIGHT: $f=h \circ q_{2} \circ h^{-1}$.

$\alpha_{\omega_{n}}$ values cluster near C and τ

Scatter plots of $\alpha_{\omega_{n}}$ values above the midpoints of intervals $I_{\omega_{n}, q_{d}}$.

Figure: $C=.1, \tau=.9$.

Figure: $C=.3, \tau=.7$.

- A point $\omega \in \Sigma^{*}$ is an infinite sequence $\omega^{*}=\ldots j_{2} j_{1} j_{0}$.
- A left-cylinder $\left[\omega_{n}^{*}\right] \subset \Sigma$ of length n is the set of all points whose first n terms (on the right) agree with ω^{*}.
- These generate the right topology and the Borel sigma algebra \mathcal{B}^{*}
- Define a probability measure $P\left(\left[\omega_{n}^{*}\right]\right)=\left|I_{\omega_{n}^{*}}\right|$.
- Define the right shift map $\sigma^{*}: \Sigma^{*} \rightarrow \Sigma^{*}$

$$
\sigma^{*}: \ldots j_{2} j_{1} j_{0} \rightarrow \ldots j_{2} j_{1}
$$

Define \mathcal{B}_{n}^{*} as the σ-algebra generated by all right-cylinders of length n, and

$$
X_{n}\left(w^{*}\right)=\frac{P\left(\left[\sigma^{*}\left(w_{n}^{*}\right)\right]\right)}{P\left(\left[w_{n}^{*}\right]\right)}=\frac{\left|I_{\sigma^{*}\left(w_{n}^{*}\right)}\right|}{\left|I_{w_{n}^{*}}\right|}
$$

That is,

$$
X_{n+1}\left(\omega 0^{*}\right)=\frac{1}{\alpha_{\omega_{n}}}, \quad X_{n+1}\left(\omega 1^{*}\right)=\frac{1}{1-\alpha_{\omega_{n}}}
$$

$\alpha_{\omega_{n}}$ values define a Martgingale on the dual symbolic space

$$
\begin{gathered}
\left|I_{0 \omega_{n}}\right|+\left|I_{1 \omega_{n}}\right|=\left|I_{\omega_{n}}\right| \\
X_{n+2}\left(\ldots 0 \omega_{n} 0\right)\left|I_{0 \omega_{n} 0}\right|+X_{n+2}\left(\ldots 0 \omega_{n} 0\right)\left|I_{0 \omega_{n} 0}\right|=X_{n+1}\left(\ldots \omega_{n} 0\right)\left|I_{\omega_{n} 0}\right|
\end{gathered}
$$

$\alpha_{\omega_{n}}$ values define a convergent Martingale on S^{*}

Theorem

The sequence $\left(X_{n}, \mathcal{B}_{n}^{*}\right)$ is a martingale on $\left(\Sigma^{*}, \mathcal{B}^{*}, P\right)$. That is,

1. $E\left[\left|X_{n}\right|\right]<\infty$ for all $n \geq 0$.
2. X_{n} is \mathcal{B}_{n}^{*}-measurable for all $n \geq 1$.
3. For all $1 \leq m \leq n, X_{m}=E\left[X_{n} \mid \mathcal{B}_{m}^{*}\right] P$-a.e.,

Theorem

Suppose $f: T \rightarrow T$ is a circle endomorphism with bounded geometry that preserves λ. Let

$$
X_{n}\left(w^{*}\right)=\frac{P\left(\left[\sigma^{*}\left(w_{n}^{*}\right)\right]\right)}{P\left(\left[w_{n}^{*}\right]\right)}=\frac{\left|I_{\sigma^{*}\left(w_{n}^{*}\right)}\right|}{\left|I_{w_{n}^{*}}\right|} .
$$

Then there exists a bounded \mathcal{B}^{*}-measurable function $X \in L^{1}(P)$ such that

1. $\lim _{n \rightarrow \infty} X_{n}=X\left(=X_{f}\right)$ exists $P-a . e$.,
2. $\lim _{n \rightarrow \infty} \int_{\Sigma^{*}}\left|X_{n}-X\right| d P=0$, and
3. $X_{n}=E\left[X \mid \mathcal{B}_{n}^{*}\right] P-$ a.e..

Finite number of error terms

What if for some $N \geq 1, \epsilon_{\omega_{n}}=0$ for all $n>N$?

Definition

In this case we say f has finite Martingale.

Figure: $C=.1, \tau=.9 . \epsilon_{\omega_{n}}=0$ for all $n>4$.

Theorem
Then f is piecewise linear.

Theorem

f has finite Martingale \Longleftrightarrow its Martingale converges to a simple function (i.e. locally constant).

Symmetric rigidity

Theorem (J)

Suppose f and g are both circle endomorphisms of the same topological degree $d \geq 2$ such that each has bounded geometry and preserves the Lebesgue probability measure λ on \mathbb{T}.

Suppose h is a symmetric conjugacy between f and g.

- If $f=q_{d}$ then h must be the identity.

Theorem

- If f has a Martingale with a locally constant limit then h must be the identity.

Outline of symmetric rigidity proof $(1 / 2)$

symmetrically conjugate \Rightarrow same limits of Martingales

$$
X_{f}\left(\omega^{*}\right)=X_{g}\left(\omega^{*}\right), \quad P-a . e .
$$

- Both limits locally constant $\Rightarrow\left(X_{f, n}\right)$ and $\left(X_{g, n}\right)$ must be finite of length n_{0}

$$
X_{n, f}\left(\omega^{*}\right)=X_{n, g}\left(\omega^{*}\right)=c\left(\omega_{n_{0}}^{*}\right) \quad \forall n \geq n_{0}
$$

- This implies

$$
\begin{gathered}
\frac{\left|I_{w_{n_{0}+m-1}, f}\right|}{\left|I_{\omega_{n_{0}+m}, f}\right|}=\frac{\left|F\left(I_{w_{n_{0}+m-1}, f}\right)\right|}{\left|F\left(I_{\omega_{n_{0}+m}, f}\right)\right|} \quad \forall m \geq 1 \\
\Rightarrow \frac{\left|F\left(I_{w_{n_{0}+m}, f}\right)\right|}{\left|I_{\omega_{n_{0}+m}, f}\right|}=\frac{\left|F\left(I_{w_{n_{0}+m-1}, f}\right)\right|}{\left|I_{\omega_{n_{0}+m-1}, f}\right|}=\ldots=\frac{\left|F\left(I_{w_{n_{0}}, f}\right)\right|}{\left|I_{\omega_{n_{0}}, f}\right|}:=\alpha_{w_{n_{0}}}
\end{gathered}
$$

- Thus f is piecewise linear

$$
\left.F\right|_{I_{\omega_{n_{0}}}}(x)=\alpha_{\omega_{n_{0}}} x+b_{\omega_{n_{0}}}
$$

Outline of symmetric rigidity proof $(2 / 2)$

- Similarly, g is piecewise linear.
- Since $\left(X_{n, f}\right)=\left(X_{n, g}\right)$ for all $n \geq n_{0}$,

$$
\frac{\left|H\left(I_{w_{n_{0}+m-1, f}}\right)\right|}{\left|H\left(I_{w_{n_{0}+m, f}}\right)\right|}=\frac{\left|I_{w_{n_{0}+m-1, g}}\right|}{\left|I_{w_{n_{0}+m, g}}\right|}=\frac{\left|I_{w_{n_{0}+m-1, f}}\right|}{\left|I_{w_{n_{0}+m, f}}\right|} .
$$

- This implies

$$
\frac{\left|H\left(I_{w_{n_{0}+m, f}}\right)\right|}{\left|I_{w_{n_{0}+m, f}}\right|}=\frac{\left|H\left(I_{w_{n_{0}+m-1, f}}\right)\right|}{\left|I_{w_{n_{0}+m-1, f}}\right|}=\ldots=\frac{\left|H\left(I_{w_{n_{0}, f}}\right)\right|}{\left|I_{w_{n_{0}}, f}\right|}:=d_{w_{n_{0}}}
$$

- Thus

$$
H(x)=d_{w_{n_{0}}} x+e_{n_{0}}, \quad \forall x \in I_{w_{n_{0}}} .
$$

- H is symmetric with $H(0)=0$ and $H(1)=1 \Rightarrow H(x)=x$.

Thank you very much!

