■ EXAMPLE 2 Combining Revenue and Cost Functions

Suppose the annual revenue, in millions of dollars, of a company is $R(t) = 0.2t^2 + 3t + 5$, where t is measured in years and t = 0 corresponds to the year 2000. The annual cost, in millions of dollars, for the company is C(t) = 4t + 9.

- (a) Find a formula for the function P(t) = R(t) C(t).
- (b) Compute and interpret P(7).

Def: GIVEN 2 FUNCTIONS $f \in g$. THE COMPOSITION $f \circ g$ (" f of g")

IS THE FUNCTION $f \circ g(x) = f(g(x))$

FIGURE 1
The h machine is composed of the g machine (first) and then the f machine.

ex. Let $f(x) = x^2 + 2x - 5$, g(x) = 3x - 1Find $f(x) = x^2 + 2x - 5$, g(x) = 3x - 1

Let
$$h(x) = \sqrt{5x-1}$$
.

FIND $f \in g$ s.t. $h(x) = f(g(x))$.

[MORE THAN ODE WAY!]

15–20 ■ Find the functions p(x) = f(g(x)) and q(x) = g(f(x)).

15.
$$f(x) = x^2 - 1$$
, $g(x) = 2x + 1$

16.
$$f(x) = 1 - x^3$$
, $g(x) = 1/x$

17.
$$f(x) = x^3 + 2x$$
, $g(x) = 1 - \sqrt{x}$

18.
$$f(x) = 1 - 3x$$
, $g(x) = 5x^2 + 3x + 2$

19.
$$f(x) = x + \frac{1}{x}$$
, $g(x) = x + 2$

20.
$$f(x) = \sqrt{2x+3}$$
, $g(x) = x^2 + 1$

DISCUSS

Car maintenance If C(m) is the average annual cost for maintaining a Honda Civic that has been driven m thousand miles and f(t) is the number of miles on Sean's Honda Civic t years after he purchased it, what does the function g(t) = C(f(t)) represent?

Carpooling As fuel prices increase, more drivers carpool. The function f(p) gives the average percentage of commuters who carpool when the cost of gasoline is p dollars per gallon. If g(t) is the average monthly price (per gallon) of gasoline, where t is the time in months beginning January 1, 2011, which composition gives a meaningful result, f(g(t)) or g(f(p))? Describe what the resulting function measures.

EXAMPLE 4 Interpreting a Composition of Functions

The altitude of a small airplane t hours after taking off is given by $A(t) = -2.8t^2 + 6.7t$ thousand feet, where $0 \le t \le 2$. The air temperature in the area at an altitude of x thousand feet is f(x) = 68 - 3.5x degrees Fahrenheit.

- (a) What does the composition h(t) = f(A(t)) measure?
- **(b)** Compute h(1) and interpret your result in this context.
- (c) Find a formula for h(t).
- (d) Does A(f(x)) give a meaningful result in this context?

TRANSFORMATIONS OF FUNCTIONS

■ Vertical and Horizontal Shifts Suppose c is a positive number.

translation of the graph of $y = f(x)$	equation
shift c units upward	y = f(x) + c
shift c units downward	y = f(x) - c
shift c units to the right	y = f(x - c)
shift c units to the left	y = f(x + c)

FIGURE 2 Vertical translations of the graph of f

FIGURE 3 Horizontal translations of the graph of f

.....

■ Vertical and Horizontal Stretching Suppose c > 1.

transformation of the graph of $y = f(x)$	equation
stretch vertically by a factor of c	y = cf(x)
compress vertically by a factor of c	$y = \frac{1}{c}f(x)$
compress horizontally by a factor of c	y = f(cx)
stretch horizontally by a factor of c	$y = f\left(\frac{1}{c}x\right)$

FIGURE 5 Stretching the graph of f horizontally

.....

■ Vertical and Horizontal Reflections

reflection of the graph of $y = f(x)$	equation
reflect about the x-axis reflect about the y-axis	y = -f(x) $y = f(-x)$

38–42 ■ The graph of $y = \sqrt{x}$ is shown in Figure 8(a). Use transformations to graph each of the following functions.

38.
$$y = \sqrt{x} + 3$$

39.
$$y = \sqrt{x+3}$$

40.
$$y = -\frac{1}{2}\sqrt{x}$$

41.
$$y = -\sqrt{x-1}$$

42.
$$y = \sqrt{-x} + 2$$

43–46 ■ The graph of $y = x^2$ is shown in Figure 9. Use transformations to graph each of the following functions.

43.
$$y = -x^2 + 2$$

44.
$$y = (x - 1)^2 - 4$$

45.
$$f(x) = \frac{1}{4}x^2 - 3$$

46.
$$g(x) = -(x+5)^2 + 3$$