\$ 2.2 Lurs

Consider
$$f(x) = \frac{x-1}{x^2-1}$$
. Dom $(+) = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$

х	f(x)	х	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751
0.995	0.50125	1.005	0.49875
0.999	0.50025	1.001	0.49975
ļ	↓	1	ţ
1	'	1+	1/2

As the wrot x Gets cusen to 1. The order flx) Gets closen to 2.

The LUM of
$$f(x)$$
 Lum $\frac{x-1}{x^2-1} = \frac{1}{2}$
As $x = \frac{1}{2}$
Is $\frac{1}{2}$

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = \frac{1}{2}$$

■ **Definition** We write

$$\lim_{x \to a} f(x) = L$$

"the limit of f(x), as x approaches a, equals L"

if the values of f(x) approach L as the values of x approach a (but are not equal to a).

<u>limbers</u> one way to approximate a limber lim f(x) is to plub in mulbers THAT GET CLOSER & CLOSER TO a & THY TO FIGURE OUT WHAT IF IF ANY) THE CUIRTS GET CLOSED & CLOSED TO.

Limit Laws Suppose that
$$c$$
 is a constant and the limits

$$\lim_{x \to a} f(x) \qquad \text{and} \qquad \lim_{x \to a} g(x)$$

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
 2. A + B

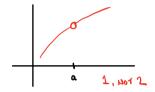
2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
 4. A - 8

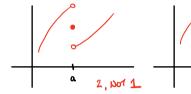
3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

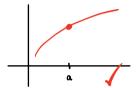
4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
 2. AB

6.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$
 where *n* is a positive integer

ex.


evaluate $\lim_{x \to 2} \frac{2x^2 - 1}{6x^2}$


(can evaluate by Direct Substitution)


Definition A function f is **continuous at a number** a if

$$\lim_{x \to a} f(x) = f(a)$$

- 1. Limit exists
- 2. flad is DEFWED
- 3. THE TWO ARE EQUAL

DEF: A FUNCTION IS CONTINUOUS ON AN INTERVAL IF IT IS

CONTINUOUS AT EMENY POINT IN THAT INTERVAL.

THAT IS, IT'S GRAPH CAN BE DRAWN WITHOUT LIFTING PENCIL OFF PAPER.

1HM.

■ The following types of functions are continuous at every number in their domains:

linear functions polynomials rational functions
power functions root functions
exponential functions logarithmic functions

- **20.** (a) Find the domain of $g(t) = \frac{t^2 3t 4}{t + 1}$.
 - **(b)** Find $\lim_{t \to 3} g(t)$.
 - (c) Find $\lim_{t\to -1} g(t)$.

35. $\lim_{x\to7} \frac{\sqrt{x+2}-3}{x-7}$ (National Ze Numerator)

THEOREM: IF f(x): g(x) FOR ALL X ON
AN INTERNAL CONTAINING a,
EXCEPT POSSIBLY AT a, THEN

lu f(x) = lu a(x).

38.
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$

INFIUME LIMINS

$$\lim_{X\to 0} \frac{1}{X^2} = \infty$$

$$= D.N.E.$$

ONE SIDED LIMITS

Ly
$$f(x) = L$$

Ly $f(x) = L$

As $x = C$

Sets Cosen to a, Always $x < a / x > a$,

fix) Gets Cosen to L .

$$\lim_{X \to 1^{-}} f(x) = 2 \qquad \lim_{X \to 1^{+}} f(x) = 1 \qquad \left(f(x) = 0 \right)$$

Note: lim f(x)=L IF & ONLY IF $\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}}$

ex. let
$$f(x) = \begin{cases} x+3 & \text{if } x \le -2 \\ x^2 & \text{if } -2 < x < 1 \\ 4 & \text{if } x = 1 \\ \sqrt{x} & \text{if } x > 1 \end{cases}$$
 (a) Lim $f(x)$ $x = -2^+$

- (c) Lu f(x)
- (d) Lu f(x)

50. Let
$$F(x) = \frac{x^2 - 1}{|x - 1|}$$
.

- (a) Find

 - (i) $\lim_{x \to 1^+} F(x)$ (ii) $\lim_{x \to 1^-} F(x)$
- **(b)** Does $\lim_{x\to 1} F(x)$ exist?
- (c) Sketch the graph of F.