$$\frac{32.4 \text{ free converties as a surfaces}}{\text{rescale}}$$

Rescale:
Rescale:
Rescale:

$$\frac{1}{16a} = \lim_{h \to 0} \frac{f(a+b) - f(a)}{b}$$

1. Discale where to Fund Denvariate, a.
2. converte lower $f(a)$
3. converte lower $f(a)$
4. converte lower $f(a)$
5. Now where $e = a = x$
(a) Fund X, where f is defined where $f(a)$
(b) Fund X, where f is defined where $f(a)$
(c) Fund where $f(a) = 0$.
(c) Fund $f(a) = 0$.
(c) Fund

Note: When f is differentiable at a , when we zeron in on Grupping=flx) At (a, flat), it works like a line with DEFINED supper ("sucoth") That supe is flat.

https://www.desmos.com/calculator/hlbpzlmjyy

Mole: f(x) = 1x | is <u>curtinuous M x=0</u> But <u>Dot DEFERENTIABLE AT x=0</u>. DRAW WITHOUT LIFTING PENCIL but SMOOTH

THE OPPOSITE IS IMPOSSIBLE:

(3) **Theorem** If a function is differentiable at a number, then it is continuous there.

Prove:
$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[f(a) + \frac{f(x) - f(a)}{x - a} (x - a) \right]$$

$$= \lim_{x \to a} \left[f(a) \right] + \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right] \cdot \left[\lim_{x \to a} (x - a) \right]$$

$$= f(a) + f'(a) \cdot O = f(a) \checkmark$$

Givens
$$f(x)$$
, we reacting its deductive as
 $f'(x)$, $\frac{d}{dx} f(x)$, on such $\frac{df}{dx}$.
When we set $y = f(x)$, we also have
 y' on $\frac{dy}{dx}$.
All Means the same thinks.
When us the same thinks.
When us the same thinks.
 $f'(a) = \frac{dy}{dx}\Big|_{x=a}$
 $f'(a) = \frac{dy}$

$$\frac{dy}{dx}\Big|_{X=4} = \frac{-1}{2\sqrt{4}(4)} = \frac{-1}{16}$$

(b) SINCE
$$\frac{-1}{2x\sqrt{x}} < 0$$
 on instermal $(0, \infty)$,
 $\frac{1}{\sqrt{x}}$ is decreasing on instermal $(0, \infty)$.

HIGHER DERIVATIVES

Givens
$$f(x)$$
 with definition of $f'(x)$,
The second definition of $f(x)$ is the definition of $f'(x)$, devoted $f''(x)$.
(ch , if $y = f(x)$, we may write $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$)
 $f''(x)$ Gives the instantaneous rate of chance of $f'(x)$ with respect to x .
(c_{1} , if $s(t) = Roman of manual observed on a straight thack,
then $s'(t) = \frac{ds}{dt} = v(t)$ is the velocity of the observed, and
 dt
 $s''(t) = \frac{d^2s}{dt^2} = \frac{d}{dt}\left(\frac{ds}{dt}\right) = \frac{d}{dt}v(t) = v'(t) = a(t)$ is the acceleration of the observed.$

ex.

SKETCH A CUAVE SUCH THAT

