Exam 1

1. (6 points) Use interval notation to describe the domain of the function $f(x) = \frac{\sqrt{3x+4}}{x^2-x}$.

Since we cannot take schane now of Negative humbers, we must have

Since we cannot divide by O, we must have

$$x^2-x\neq0$$
 => $x(x-1)\neq0$ => $x\neq0$ AND $x\neq1$

PUTING ALL OF THESE CONDITIONS TOGETHER. , WE HAVE

- 2. Let $f(x) = x^3 + 2x$ and let $g(x) = 1 \sqrt{x}$.
 - (a) (4 points) Find f(g(x)).
 - (b) (4 points) Find g(f(x)).

(a)
$$f(\sqrt{x}) = f(1 - \sqrt{x}) = (1 - \sqrt{x})^3 + 2(1 - \sqrt{x})$$

(b) $g(f(x)) = g(x^3 + 2x) = 1 - \sqrt{x^3 + 2x}$

3. (6 points) Give an equation for the line that passes through the points (-1, -2) and (4, 3).

SLOPE
$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-2)}{4 - (-1)} = \frac{3 + 2}{4 + 1} = 1$$

USING POINT-SIDRE FORMULA
$$y-y$$
, = $m(x-x,)$ with $(x,y,)=(-1,-2)$
AND $m=1$ Gives $y+2=x+1$ on $y=x-1$

4. (6 points) Make a rough sketch of the graph $y = 2^x - 4$. Label the x-intercept, y-intercept, and horizontal asymptote.

X-INT: Set
$$y=0$$
, Solve For x

$$0=2^{x}-4=2^{x}=4=2^{x}=2$$
Y-INT: Set $x=0$, Solve For y

- 5. (a) (4 points) Evaluate $\log_{16} 4$.
 - (b) (6 points) Solve $\ln(x-1) = \ln(x) 1$.

(a) write
$$l_{0}$$
 J_{16} $4 = W$. Then $16^{W} = 4$.
Since $16^{\frac{1}{2}} = \sqrt{16} = 4$, we have $W = \frac{1}{2}$

(b)
$$\ln(x-1) = \ln(x) - 1 \implies \ln(x-1) - \ln(x) = -1$$

=> $\ln\left(\frac{x-1}{x}\right) = -1 \implies \frac{x-1}{x} = e^{-1} = \frac{1}{e}$
=> $x-1 = \frac{1}{e}x \implies x - \frac{1}{e}x = 1 \implies x(1-\frac{1}{e}) = 1$
=> $x = \frac{1}{1-\frac{1}{e}} = \frac{e}{e-1}$

- 6. The population P of a bacteria t days after being placed in an ideal environment is given by an exponential function $P(t) = C \cdot a^t$, for some constants C and a.
 - (a) (6 points) If the population after 5 days is 6,000 and the population after 10 days is 48,000, find the exponential function P(t).
 - (b) (4 points) When will the population reach 750,000? Leave your answer as a logarithmic expression.

(a)
$$P(t) = Ca^{t}$$
 $P(s) = 6,000$
 $P(lo) = 46,000$
 $P(lo) = 6,000$
 $P(lo) =$

7. Use the graph below to answer the following questions. If a limit does not exist, write DNE.

- (a) (2 points) $\lim_{x \to 1^{-}} f(x) = -2$ (b) (2 points) $\lim_{x \to 1^{+}} f(x) = 0$
- (c) (2 points) $\lim_{x \to 1} f(x)$ DNE
- (d) (4 points) Is f continuous at x = 2? Why or why not?

No,
$$\lim_{x\to 2} f(x) \neq f(z)$$

8. Calculate each of the following limits. If a limit does not exist, write DNE.

(a) (6 points)
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

(b) (6 points)
$$\lim_{x \to 1} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

(a)
$$\lim_{X \to -2} \frac{(x+1)^2}{(x^2+1)(x+1)(x-1)} = \frac{-1+1}{(-1)^2+1(-1-1)} = \frac{0}{(2)(-2)} = 0$$

(b) PLUG ID
$$X = 1$$
: $\frac{\frac{1}{4} + 1}{4 + 1} = \frac{\frac{5}{4}}{5} = \frac{1}{4}$

- 9. Let $f(x) = \sqrt{16 x}$.
 - (a) (4 points) Find the average rate of change in f over the interval [7, 12].
 - (b) (8 points) Find the instantaneous rate of change in f when x = 7. That is, find f'(7). Note: for this question you must calculate f'(7) as a limit.

$$\frac{f(12)-f(7)}{12-7} = \frac{\sqrt{16-12}-\sqrt{16-7}}{12-7} = \frac{2-3}{12-7} = \frac{-1}{5}$$

(b)
$$f'(7) = \lim_{X \to 7} \frac{f(X) - f(7)}{X - 7} = \lim_{X \to 7} \frac{\sqrt{16 - X} - 3}{X - 7} = \frac{\sqrt{16 - X} + 3}{\sqrt{16 - X} + 3}$$

$$= \lim_{X \to 7} \frac{16 - X - 9}{(X - 7)(\sqrt{16 - X} + 3)} = \lim_{X \to 7} \frac{7 - X}{(X - 7)(\sqrt{16 - X} + 3)} = \lim_{X \to 7} \frac{-(X - 7)(\sqrt{16 - X} + 3)}{(X - 7)(\sqrt{16 - X} + 3)} = \lim_{X \to 7} \frac{-1}{\sqrt{16 - X} + 3} = \frac{-1}{6}$$

10. (8 points) Let $f(x) = 2x^2 + 5x$. Find f'(x).

Note: for this question you must calculate f'(x) as a limit.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2(x+h)^{2} + 5(x+h) - (2x^{2} + 5x)}{h}$$

$$= \lim_{h \to 0} \frac{2x^{2} + 4xh + 2h^{2} + 5x + 5h - 2x^{2} - 5x}{h} = \lim_{h \to 0} \frac{X(4x + 2h + 5)}{X}$$

$$= \lim_{h \to 0} \frac{4x + 5}{h}$$

11. Use the graph of f'(x) below to answer the following questions about f(x).

- (a) (4 points) On what interval(s) is f(x) increasing/decreasing?
- (b) (4 points) On what interval(s) is f(x) concave up/down?
- (c) (4 points) How many local minimums does f(x) have?

0

- (a) f is increasing when f' is positive: increasing $(-\omega, 0)$ f is decreasing when f' is degree: decreasing $(0, \infty)$
- (b) f is concave up when f' is increasing: concave up $(-2,-1) \cup (1,2)$ f is concave down when f' is decreasing: concave down $(-\infty,-2) \cup (-1,1) \cup (2,\infty)$
- (c) f has a local minimum when f chances from decreasing to increasing, i.e. when f' chances from Negative to Positive. This does not happen.