Exam 2 Practice Problems

1. Find $\frac{d y}{d x}$.
(a) $y=50\left(\frac{1}{2}\right)^{x / 9}$
(b) $y=\frac{e^{3 x}}{\left(1+x^{2}\right)^{2}}$
(c) $y=2^{5 x} \ln \left(1-x^{2}\right)$
(d) $y=\ln \left(\sqrt[3]{\frac{e^{2}}{x(2 x+7)^{4}}}\right)$
2. Suppose $C(q)$ is the cost that a company must pay to produce q units. If $C(1,250)=3,600$ and $C^{\prime}(1,250)=2.4$, approximately how much would it cost the company to produce 1,300 units?
3. A company has the following cost and demand functions.

$$
C(q)=84+1.26 q-.01 q^{2}+.00007 q^{3}, \quad p=3.5-.01 q
$$

(a) If the price of each unit is $\$ 1.20$, how many units will be sold?
(b) Determine the production level that will maximize profit for the company.
4. Evaluate $\log _{4}\left(\frac{1}{16}\right)$ and $\log _{9}(3)$.
5. Give an equation for the tangent line to the curve

$$
2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)
$$

at the point $(3,1)$.
6. How much money would need to be deposited into an account that earns 6% annual interest compounded quarterly so that it is worth $\$ 15,000$ in 5 years?
7. How long will it take an investment to double if it earns 5% annual interest compounded continuously?
8. Suppose a radioactive material takes 3 years to decay to 99% of its original mass. Find the half-life of this material. Assume that the mass of the radioactive material obeys the law of natural growth.
9. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?
10. Find the absolute maximum and absolute minimum values of $f(x)=\frac{x}{x^{2}+4}$ on the interval $[0,3]$.
11. Consider the function $f(x)=x^{4}-2 x^{2}+2$.
(a) Find the intervals on which f is increasing/decreasing.
(b) Find the local maximum and minimum values of f.
(c) Find the intervals of concavity and the inflection points.

