Quiz 1

Name: \qquad * Assurer Kor * Section: \qquad
Answer all 6 questions for a total of 100 points. Write your solutions in the space provided and put a box around your final answers.

1. Solve for x.
(a) (10 points) $3 e^{x / 2}+1=13$

$$
\begin{aligned}
3 e^{x / 2} & =12 \\
e^{x / 2} & =4 \\
\frac{x}{2} & =\ln 4
\end{aligned}
$$

(b) (10 points) $\ln (x+1)=\ln (x)+1$

$$
\begin{gathered}
\ln (x+1)-\ln (x)=1 \\
\ln \left(\frac{x+1}{x}\right)=1 \\
\frac{x+1}{x}=e
\end{gathered}
$$

(b) (10 points) $\ln (x+1)=\ln (x)+1$

$$
x+1=e x
$$

$$
1=e x-x=x(e-1)
$$

$$
\frac{1}{e-1}=x
$$

2. (16 points) A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 inches by 20 inches by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume V of the box as a function of x.

$$
V=x(20-2 x)(12-2 x)
$$

on anyThing
equivalent

Last edited 01/16/2023

3. Let

$$
f(x)=\frac{x-1}{x^{2}+1}, \quad g(x)=3 x+2, \quad \text { and } \quad h(x)=\frac{1}{\sqrt{x}}
$$

(a) (8 points) Find $f(g(0)), g(h(9))$, and $h(f(5))$.

$$
\begin{aligned}
& f(g(0))=f(3(0)+2)=f(2)=\frac{2-1}{2^{2}+1}=\frac{1}{5} \\
& g(h(9))=g\left(\frac{1}{\sqrt{9}}\right)=g\left(\frac{1}{3}\right)=3\left(\frac{1}{3}\right)+2=3 \\
& h(f(5))=h\left(\frac{5-1}{5^{2}+1}\right)=h\left(\frac{4}{26}\right)=\frac{1}{\sqrt{\frac{4}{26}}}=\frac{\sqrt{26}}{2}
\end{aligned}
$$

(b) (10 points) Find $h(g(x))$ and state its domain using interval notation.

$$
h(g(x))=h(3 x+2)=\frac{1}{\sqrt{3 x+2}}
$$

Domain: cannot Tace Γ of neo \#'s: canna divide by 0 :

$$
\begin{array}{rlrl}
3 x+2 & \geq 0 \\
3 x & \geq-2 \\
x & \geq-2 / 3 & \sqrt{3 x+2} \neq 0 \\
& \neq-2 / 3, \infty)
\end{array}
$$

(c) (6 points) Find the avenge rate of change of $f(x)$ over the interval $[2,4]$.

$$
\begin{aligned}
\frac{f(4)-f(2)}{4-2} & =\frac{\frac{3}{17}-\frac{1}{5}}{4-2}=\frac{1}{2}\left(\frac{(5)(3)-(17)(1)}{(5)(17)}\right) \\
& =\frac{1}{2}\left(\frac{-2}{85}\right)=-\frac{1}{85}
\end{aligned}
$$

4. (16 points) Sketch the graph of $f(x)=\left\{\begin{array}{ll}8-\frac{2 x}{3} & \text { if } x \leq-3 \\ |x|+2 & \text { if }-3<x<2 \\ x^{2} & \text { if } x \geq 2\end{array}\right.$.

5. (8 points) Suppose the graph

$$
y=2 e^{x}-x^{2}+\frac{1}{x}
$$

is shifted 4 to the left and 3 units up. Give an equation for the new, transformed graph.

6. Suppose $f(5)=10$ and $f(10)=25$.
(a) (6 points) Find $f(x)$ assuming f is a linear function, i.e. $f(x)=m x+b$.

Slope $m=\frac{25-10}{10-5}=\frac{15}{5}=3$
Ponv-SLope $\in Q: \quad y-10=3(x-4)$ an $y=3 x-2$

$$
\therefore \quad f(x)=3 x-2
$$

(b) (10 points) Find $f(x)$ assuming f is an exponential function, ie. $f(x)=b a^{x}$.

$$
\begin{aligned}
& 25=b a^{10} \\
& 10=b a^{5}
\end{aligned} \quad \Rightarrow \quad \frac{25}{10}=\frac{b a^{10}}{b a^{5}}=a^{5} \Rightarrow a=2.5^{1 / 5}
$$

THEN $10=b\left(2.5^{1 / 5}\right)^{5}=2.5 b \quad \Rightarrow \quad b=4$

$$
\therefore f(x)=4\left(2.5^{1 / 5}\right)^{x} \text { or } f(x)=4(2.5)^{1 / 5}
$$

