Quiz 2

Name:

\qquad

Answer all 6 questions for a total of 100 points. Write your solutions in the space provided and put a box around your final answers.

1. Use the graph below to find each of the limits. If a limit does not exist, write DNE.

(a) (4 points) $\lim _{x \rightarrow-1^{+}} f(x)=1$
(b) (4 points) $\lim _{x \rightarrow 0^{+}} f(x)=0$
(c) (4 points) $\lim _{x \rightarrow 0^{-}} f(x)=0$
(d) (4 points) $\lim _{x \rightarrow 1^{+}} f(x)=0$
(e) (4 points) $\lim _{x \rightarrow 1^{-}} f(x)=1$
(f) (4 points) $\lim _{x \rightarrow 0} f(x)=0$
(g) (4 points) $\lim _{x \rightarrow 1} f(x)$ D.N.E.
2. Evaluate each of the following limits. If a limit does not exist, write DNE
(a) (10 points) $\lim _{x \rightarrow-2} \frac{-2 x-4}{x^{3}+2 x^{2}}$
$=\lim _{x \rightarrow-2} \frac{-21 x+2}{x^{2}(x+2)}$
$x=-2: \frac{-2}{(-2)^{2}}=\frac{-2}{4}=-\frac{1}{2}$
(b) (10 points) $\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{x+1} \cdot \frac{\sqrt{x^{2}+8}+3}{\sqrt{x^{2}+8}+3}$
$=\lim _{x \rightarrow-1} \frac{x^{2}+8-9}{(x+1)\left(\sqrt{x^{2}+8}+3\right)}=\lim _{x \rightarrow-1} \frac{x^{2}-1}{(x+1)\left(\sqrt{x^{2}+8}+3\right)}$
$=\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x \rightarrow-1)\left(\sqrt{x^{2}+8}+3\right)}$
$x=-1: \frac{-1-1}{\sqrt{(-1)^{2}+8}+3}=\frac{-2}{6}$ on $-\frac{1}{3}$
3. There are two equivalent definitions for the derivative of a function $f(x)$ at a point a, denoted $f^{\prime}(a)$.

$$
\begin{gather*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{Definition1}\\
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{gather*}
$$

(Definition 2)
Let $f(x)=\frac{x}{2-x}$.
(a) (10 points) Use Definition 1 to find $f^{\prime}(4)$.

$$
\begin{aligned}
f^{\prime}(4) & =\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{x}{2-x}-\frac{4}{2-4}}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{1}{x-4}\left(\frac{x}{2-x}+\frac{2(2-x)}{2-x}\right)=\lim _{x \rightarrow 4} \frac{-x+4}{(x-4)(2-x)} \\
& =\lim _{x \rightarrow 4} \frac{-(x-4)}{(x-4)(2-x)} \\
x & =4
\end{aligned}
$$

(b) (6 points) Use your answer to part (a) to give an equation for the line tangent to $y=f(x)$ at the point $(4,-2)$.

$$
\begin{gathered}
y=f(4)+f^{\prime}(4)(x-4)=-2+\frac{1}{2}(x-4), \text { or } \\
y=\frac{1}{2} x-4
\end{gathered}
$$

4. There are two equivalent definitions for the derivative of a function $f(x)$ at a point a, denoted $f^{\prime}(a)$.

$$
\begin{gather*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{Definition1}\\
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{Definition2}
\end{gather*}
$$

Let $f(x)=3 x^{2}-4 x$.
(a) (10 points) Use Definition 2 to find $f^{\prime}(2)$.

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{3(2+h)^{2}-4(2+h)-\left(3(2)^{2}-4(2)\right)}{h}
$$

Note: $3(2+h)^{2}-4(2+h)-\left(3(2)^{2}-4(2)\right)$
$=3\left(4+4 h+h^{2}\right)-8-4 h-12+8$
$=2 x+12 h+3 h^{2}-8-4 h-22+8$
$=h^{2}+8 h=h(h+8)$
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{k(h+8)}{k} \xrightarrow{h=0} 8$
(b) (6 points) Use your answer to part (a) to give an equation for the line tangent to $y=f(x)$ at the point $(2,4)$.

$$
y=f(2)+f^{\prime}(2)(x-2)=4+8(x-2), \text { or }
$$

$$
y=8 x-12
$$

5. (10 points) Evaluate the limit $\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 x+1}+1}$.

Algebraic flections (like this) are continuous on their domaine.
since O is in the domain of f, f is continuous at 0 .
That means $\lim f(x)=f(0)$.

$$
x \rightarrow 0
$$

$$
\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 x+1}+1}=\frac{3}{\sqrt{3(0)+1}+1}=\frac{3}{2}
$$

6. (10 points) Consider the graph $y=f(x)$ below.

$$
\begin{aligned}
& 3 \text { PUKES WHERE } \\
& f^{\prime}(x)=0
\end{aligned}
$$

Which one of the following graphs is the graph $y=f^{\prime}(x)$? Why (briefly)?

3 Pucks what e
 $$
f^{\prime}(x)=0
$$

(a)

(c)

(b)

(d)

