## Quiz 4

Name：

## ＊Answer Key ${ }^{*}$

Section： $\qquad$
Answer all 5 questions for a total of 100 points．Write your solutions in the space provided and put a box around your final answers．Answers can be left as logarithmic／exponential expressions，or a calculator can be used to write your answers numeriacally．

1．（25 points）The equation

$$
x^{2}-x y+y^{2}=3
$$

represents a＂rotated ellipse＂，that is，an ellipse whose axes are not parallel to the coordinate axes．Find the points at which this ellipse crosses the $x$－axis（i．e．$x$－intercepts）and show that the tangent lines at these points are parallel（i．e．have the same slope）．

$$
\begin{aligned}
& \text { THe curse causes 死 } x-4 x 15 \text { meme } y=0 \text { : } \\
& x^{2}-x(0)+(0)^{2}=3 \Rightarrow x^{2}=3 \\
& x= \pm \sqrt{3} \Rightarrow A 1 \text { polis }( \pm \sqrt{3}, 0) \text {. } \\
& \text { FWD } \frac{d y}{d x}: \quad \frac{d}{d x}\left[x^{2}-x y+y^{2}\right]=\frac{d}{d x}[3] \\
& 2 x-y-x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{y-2 x}{2 y-x} \\
& \left.\frac{d y}{d x}\right|_{(\sqrt{3}, 0)}=\frac{0-2 \sqrt{3}}{2(0)-\sqrt{3}}=2 \\
& \left.\frac{d y}{d x}\right|_{(-\sqrt{3}, 0)}=\frac{0+2 \sqrt{3}}{2(0)+\sqrt{3}}=2
\end{aligned}
$$

2. (10 points) Find the derivative of $f(x)=\ln \left(\sqrt{\frac{3 x+2}{3 x-2}}\right)$. Hint: the calculus will be much easier if you first apply log laws to $f(x)$.

$$
\begin{aligned}
f(x) & =\ln \left(\left(\frac{3 x+2}{3 x-2}\right)^{1 / 2}\right)=\frac{1}{2} \ln \left(\frac{3 x+2}{3 x-2}\right) \\
& =\frac{1}{2}(\ln (3 x+2)-\ln (3 x-2)) \\
f^{\prime}(x) & =\frac{1}{2}\left(\frac{1}{3 x+2} \cdot 3-\frac{1}{3 x-2} \cdot 3\right)=\frac{3}{2}\left(\frac{1}{3 x+2}\right)
\end{aligned}
$$

3. (20 points) Suppose a sample of radioactive material has an initial mass of 92.3 grams and decays exponentially. If its mass 10 days later is 91.8 grams, find the half-life of the material.
Decays expaneurtally: $M(t)=C e^{k t}$
Given (1) $M(0)=92.3$, so $92.3=\frac{C e_{1}^{k .0}}{} \Rightarrow C=92.3$

$$
\begin{aligned}
&(2) M(10)=91.8, \text { so } 91.8=92.3 e^{k \cdot 10} \Rightarrow \frac{91.8}{92.3}=e^{k \cdot 10} \\
& \Rightarrow\left(\frac{91.8}{92.3}\right)^{1 / 10}=e^{k} \ln \left(\left(\frac{91.8}{92.3}\right)^{1 / 10}\right) \\
& \therefore M(t)=92.3\left(\frac{91.8}{92.3}\right)^{t / 10}
\end{aligned}
$$

Now solve : $92.5\left(\frac{91.8}{92.3}\right)^{t / 10}=\frac{1}{2} \cdot 97.3 \Rightarrow\left(\frac{91.8}{92.3}\right)^{t / 10}=\frac{1}{2}$

$$
\Rightarrow \frac{t}{10} \ln \left(\frac{91.8}{92.3}\right)=\ln \left(\frac{1}{2}\right) \Rightarrow \frac{10 \ln \left(\frac{1}{2}\right)}{\ln \left(\frac{91.8}{92.3}\right)} \text { DAYS }
$$

(DON'T NEED to wecuDe wats)
4. How long does it take an investment to double if it earns $4.68 \%$ annual interest...
(a) (10 points) compounded semi-annually (twice per year)?

Coulcowd merest: $A(t)=P\left(1+\frac{r}{n}\right)^{n t}=P\left(1+\frac{.0468}{2}\right)^{2 t}=P(1.0234)^{2 t}$ (a times per year)

SOLVE FOR $t: A(t)=2 P$ (DOUBLE)

$$
\begin{aligned}
& P(1.0234)^{2 t}=28 \\
& 2 t \ln (1.0234)=\ln (2) \Rightarrow t=\frac{\frac{\ln (2)}{2 \ln (1.0234)} \text { YeARS }}{\approx 15 \text { years }}
\end{aligned}
$$

(b) (10 points) compounded continuously?

Continuously Compounded Incest: $\quad A(t)=P e^{r t}=P e^{.0468 t}$
Solve for $t: \operatorname{Pe} .0468 t=2 P$ (Double)

$$
\begin{aligned}
& .0468 t=\ln (2) \Rightarrow t=\frac{\ln / 21}{.0468} \text { Years } \\
& \text { on } \approx 14.8 \text { Yeans }
\end{aligned}
$$

5. ( 25 points) A street light is mounted at the top of a pole 15 ft tall. A man 6 ft tall walks away from the pole with speed of $5 \mathrm{ft} / \mathrm{s}$ along a straight path. How fast is the tip of his shadow moving when he is 40 ft from the pole?


$$
\text { Let } \begin{aligned}
x & =\text { distance From Pole to Man } \\
s & =\text { ostance From Pole to til of Shadow }
\end{aligned}
$$

G NED: $\frac{d x}{d t}=5 \mathrm{t} / \mathrm{s}$
$F\left(N D: \frac{d s}{d t}\right.$
are similar triangles.

Thenerole, $\frac{\text { Base }}{\text { Hal dit }}=\frac{s}{15}=\frac{s-x}{6}$
$\Rightarrow \quad 6 s=15(s-x)=15 s-15 x$
$15 x=9 s$
$5 x=3 s \quad$ (relation quarries)
$\frac{d}{d t}[S x]=\frac{d}{d t}[3 s] \quad \Rightarrow \quad S \frac{d x}{d t}=3 \frac{d s}{d t}$
$\therefore \frac{d s}{d t}=\frac{5}{3} \frac{d x}{d t}=\frac{s}{3}(5 \mathrm{ft} / \mathrm{s})=\frac{25}{3} \mathrm{ft} / \mathrm{s}$
(Note that $\frac{d s}{d t}$ does der defend an $x, ~ i t$ is constant.
The tip of time shadow moves at constant steed.)

