Quiz 5 Solutions

Name: \qquad Section: \qquad

Answer questions 1-3 for a total of 100 points. Answer question 4 for 20 additional bonus points. Write your solutions in the space provided and put a box around your final answers.

1. Find the absolute maximum and absolute minimum values of f on the given interval.
(a) (20 points) $f(x)=x^{3}-6 x^{2}+5,-3 \leq x \leq 5$

Solution: (Closed interval method, $\S 4.2$) First we find the critical numbers of f, i.e. points c in the domain such that $f^{\prime}(c)$ is zero or undefined. Since $f^{\prime}(x)=3 x^{2}-12 x$ is a polynomial, it is never undefined. So we solve $f^{\prime}(x)=0$.

$$
\begin{aligned}
f^{\prime}(x)=3 x^{2}-12 x & =0 \\
3 x(x-4) & =0 \\
x & =0,4 .
\end{aligned}
$$

Next, since all critical numbers are in the specified domain $[-3,5]$, we evaluate f at all critical numbers in the closed interval $[-3,5]$ as well as at the endpoints.

x	$f(x)$
-3	-58
0	5
4	-79
5	-130

Therefore f has absolute maximum value $f(0)=5$ and absolute minimum value $f(5)=-130$.
(b) (20 points) $g(x)=x-\sqrt[3]{x},-1 \leq x \leq 4$

Solution: (Closed interval method, §4.2) First we find the critical numbers of g.

$$
\begin{aligned}
g^{\prime}(x)=1-\frac{1}{3} x^{-2 / 3} & =0 \\
x^{-2 / 3} & =3 \\
x^{-1 / 3} & = \pm \sqrt{3} \\
x & = \pm \sqrt{3}^{-3}= \pm \frac{1}{3 \sqrt{3}}
\end{aligned}
$$

Next, since all critical numbers are in the specified domain $[-1,4]$, we evaluate g at all critical numbers in the closed interval $[-1,4]$ as well as at the endpoints.

x	$g(x)$
-1	0
$-1 / 3 \sqrt{3}$	$2 / 3 \sqrt{3} \approx .3849$
$1 / 3 \sqrt{3}$	$-2 / 3 \sqrt{3} \approx-.3849$
4	$4-4^{1 / 3} \approx 2.4126$

Therefore g has absolute maximum value $g(4)=4-4^{1 / 3} \approx 2.4126$ and absolute minimum value $g(1 / 3 \sqrt{3})=-2 / 3 \sqrt{3} \approx-.3849$.
2. Consider the function

$$
f(x)=(x+1)^{5}-5 x-2
$$

(a) (20 points) Find the intervals on which f is increasing/decreasing and all local maximum/minimum values of f.

Solution: In order to find where f is increasing/decreasing, we find where the derivative f^{\prime} is positive/negative. Since the sign of f^{\prime} can only change at critical numbers, the critical numbers cut the domain of f into intervals on which the sign of f^{\prime} is constant. We can determine the sign of f^{\prime} on each interval by determining the sign of each fator of f^{\prime} on each interval, organizing our work with a sign table.

$$
\begin{aligned}
& f^{\prime}(x)=5(x+1)^{4}-5=0 \\
& 5\left[(x+1)^{4}-1\right]=0 \\
& 5\left((x+1)^{2}+1\right)\left((x+1)^{2}-1\right)=0 \text { (difference of squares) } \\
& 5\left((x+1)^{2}+1\right)((x+1)+1)((x+1)-1)=0 \text { (difference of squares) } \\
& 5 x\left((x+1)^{2}+1\right)(x+2)=0 \\
& x=-2,0
\end{aligned}
$$

Thus $f(x)$ is increasing on $(-\infty,-2) \cup(0, \infty)$ and decreasing on $(-2,0)$. We can now use the First Derivative Test (§4.3) to find the local maximum and minuimum values of f. Since f changes from increasing to decreasing at $x=-2, f(-2)=7$ is a local maximum value. Since f changes from decreasing to increasing at $x=0, f(0)=-1$ is a local minimum value.
(b) (20 points) Find the intervals on which f is concave up/down and all inflection points of f.

Solution: In order to find where f is concave up/down, we find where the second derivative $f^{\prime \prime}$ is positive/negative. The method is the same as part (a), except now we work with the second derivative $f^{\prime \prime}$. Since $f^{\prime \prime}$ has a much simpler factored form than f^{\prime}, it has a much simpler sign table.

$$
\begin{aligned}
f^{\prime \prime}(x)=20(x+1)^{3} & =0 \\
x+1 & =0 \\
x & =-1
\end{aligned}
$$

	$(-\infty,-1)$	$(-1, \infty)$
$20(x+1)^{3}$	neg	pos
$f^{\prime \prime}(x)$	neg	pos
$f(x)$	C.D.	C.U.

Thus f is concave down on $(-\infty,-1)$ and concave up on $(-1, \infty)$. Since f changes from cancave down to cancave up at $x=-1$, the graph of f has an inflection point at $(-1, f(-1))=(-1,3)$.
3. (20 points) A model used for the yield Y of an agricultural crop as a function of the nitrogen level N in the soil (measured in appropriate units) is

$$
Y=\frac{k N}{1+N^{2}}
$$

where k is a positive constant. What nitrogen level gives the largest yield?

Solution: Note that while Y is mathematically defined for all values of N, in this context where N represents the level of nitrogen in the soil, the domain should be restricted to $N \geq 0$. So we must find the absolute maximum value of Y on the interval $[0, \infty)$. Since this interval is not closed, the Extreme Value Theorem does not guarentee that there is an absolute maximum value for Y. Still, by finding where Y is increasing/decreasing, we hope to find an absolute maximum value. We proceed just as in question 1.

$$
\begin{aligned}
Y^{\prime}=\frac{k\left(1+N^{2}\right)-k N(2 N)}{\left(1+N^{2}\right)^{2}} & =0 \text { (quotient rule) } \\
\frac{k\left(1-N^{2}\right)}{\left(1+N^{2}\right)^{2}} & =0 \\
\frac{k(1+N)(1-N)}{\left(1+N^{2}\right)^{2}} & =0 \\
N & = \pm 1
\end{aligned}
$$

Note that only the critical number $N=1$ is in the domain $(0, \infty)$.

	$(0,1)$	$(1, \infty)$
k	pos	pos
$(1+N)$	pos	pos
$(1-N)$	pos	neg
$\left(1+N^{2}\right)^{2}$	pos	pos
Y^{\prime}	pos	neg
Y	incr	decr

So Y is increasing on $(0,1)$ and decreasing on $(1, \infty)$. Thus Y has a local maximum at $N=1$ with local maximum value $Y=1 / 2$. Since Y is increasing on all of its domain to the left of $N=-1$ and decreasing on all of its domain to the right of $N=1$, we see that Y also attains its absolute maximum at $N=1$ with absolute maximum value $Y=1 / 2$.
4. $(20$ points (bonus)) Find the point on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$.

Solution: Recall that the distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

So the distance from any point (x, y) and the point $(3,0)$ is

$$
\begin{equation*}
\sqrt{(x-3)^{2}+y^{2}} . \tag{1}
\end{equation*}
$$

Now suppose the point (x, y) is on the curve $y=\sqrt{x}$. Then, replacing y with \sqrt{x} in equation (1) gives

$$
\sqrt{(x-3)^{2}+\sqrt{x}^{2}}
$$

Let us set

$$
f(x)=\sqrt{(x-3)^{2}+\sqrt{x}^{2}}=\sqrt{x^{2}-5 x+9}
$$

Thus $f(x)$ is the distance between $(3,0)$ and a point of the curve $y=\sqrt{x}$ as a function of x. Our job is to find the absolute minimum value of f on its domain $[0, \infty)$. Since this interval is not closed, the Extreme Value Theorem does not guarentee that there is an absolute minimum value for f. Still, by finding where f is increasing/decreasing, we hope to find an absolute minimum value. We proceed just as in question 1.

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1}{2}\left(x^{2}-5 x+9\right)^{-1 / 2}(2 x-5)=0 \\
\frac{2 x-5}{2 \sqrt{x^{2}-5 x+9}}=0 \\
2 x-5=0 \\
x=5 / 2 \\
\\
\\
\hline 2 x-5 \\
\hline(0,5 / 2) \\
\hline \text { neg } \\
\hline f^{2}-5 x+9 \\
\hline f^{\prime}(x) \\
f(x)
\end{array}
$$

So f is decreasing on $(0,5 / 2)$ and increasing on $(5 / 2, \infty)$. Thus f has a local minimum at $x=5 / 2$. Since $f(x)$ is decreasing on all of its domain to the left of $x=5 / 2$ and increasing on all of its domain to the right of $x=5 / 2$, we see that $f(x)$ also attains its absolute minimum at $x=5 / 2$. Therefore, the point on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$ has x-coordinate $5 / 2$, that is $(5 / 2, \sqrt{5 / 2})$.

