Exam 2

## Name: \_

Each question is worth 5 points. Show your work in the space provided and **put a box around your final answer**. Answers should be simplified, but can include logarithmic and/or exponential expressions. Good luck!

1. Sketch the graph of  $f(x) = 2 - \sqrt{x+1}$ . Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. State the domain and range using interval notation.

| _        |   | _ | <br>_ |  | _ | _ | <br> | _ | _ | <br>_ | <br>_ | _ | <br>_ | _ |
|----------|---|---|-------|--|---|---|------|---|---|-------|-------|---|-------|---|
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          | _ |   |       |  |   |   |      |   |   |       | _     |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
| $\vdash$ |   |   |       |  |   |   |      |   |   |       |       |   |       |   |
|          |   |   |       |  |   |   |      |   |   |       |       |   |       |   |

2. Suppose  $f(x) = 2x^2 + x$  and g(x) = 3 - x. Find f(g(x)) and g(f(x)).

Exam 2

3. Let f be the one-to-one function  $f(x) = \frac{3}{x-4}$ . Find  $f^{-1}(x)$ .

4. Use the following table to evaluate  $g(f^{-1}(2))$ .

| x                                           |   |   |   |   |   | 5 |
|---------------------------------------------|---|---|---|---|---|---|
| $\begin{array}{c} f(x) \\ g(x) \end{array}$ | 1 | 4 | 3 | 0 | 2 | 5 |
| g(x)                                        | 4 | 2 | 3 | 1 | 5 | 0 |

5. Consider the quadratic function  $q(x) = x^2 - 12x + 40$ . Use "completing the square" to write q(x) in standard form. Then determine the maximum/minimum value of q(x) and state whether it is a maximum or a minimum.

6. Find the maximum/minimum value of  $f(x) = -\frac{x^2}{3} + 2x + 7$  and state whether it is a maximum or minimum.

7. Let  $y = -7x^5 - x^4 + 5x + 2$ . Describe the end behavior of f by filling in the blanks:

As  $x \to -\infty$ ,  $y \to$ \_\_\_\_\_. As  $x \to \infty$ ,  $y \to$ \_\_\_\_\_.

8. Sketch the graph of the polynomial  $P(x) = -\frac{2}{3}x^2(x-4)$ . Label any/all *x*-intercepts, *y*-intercepts, horizontal asymptotes, and vertical asymptotes. Make sure your graph exhibits the proper end behavior and correctly shows where P(x) is positive/negative.

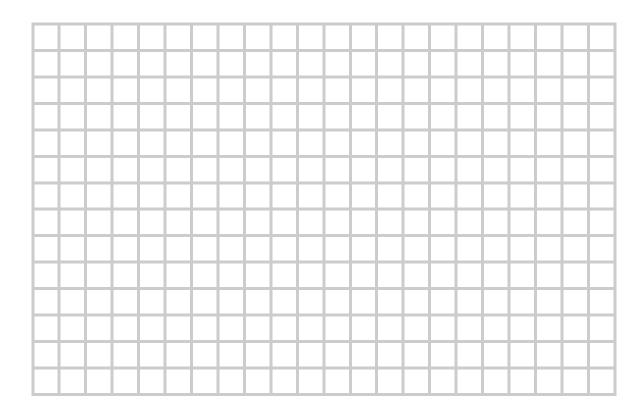
|   |   |   |       | - |   | - | - |  |  |   |   |   |   | -    |   |
|---|---|---|-------|---|---|---|---|--|--|---|---|---|---|------|---|
|   | _ |   |       |   | _ |   |   |  |  |   |   |   |   |      |   |
|   |   |   |       |   |   |   |   |  |  |   |   |   |   |      | _ |
|   |   |   |       | _ |   | _ | _ |  |  |   |   |   | - | _    |   |
| _ |   | _ | <br>_ |   |   |   |   |  |  | _ | _ | _ |   | <br> |   |
|   |   |   |       |   |   |   |   |  |  |   |   |   |   |      |   |
|   |   |   |       |   |   |   |   |  |  |   |   |   |   |      |   |
|   |   |   |       |   |   |   |   |  |  |   |   |   |   |      |   |

9. Solve:  $7^{1-2x} = 7^{3x-5}$ .

10. Solve  $8e^{x/3} = 40$ .

11. Solve: 
$$\frac{50}{1+e^{-x}} = 4.$$

12. Sketch the graph of  $f(x) = 2 + 4^{-x}$ . Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. State the domain and range using interval notation.


| _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   | _ |   | _ |   |   | _ | _ | _ | _ |   |   |   | _ |   |   |   | _ |   | _ | _ |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   | _ | _ | _ |   |   |   |   | _ |   |   |   | _ |   |   | _ |   | _ |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   | _ |   |   |   |   |   |   |   |   |   |   |   | _ |   | _ |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   | _ |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

13. Evaluate  $\log_2\left(\frac{1}{32}\right)$ .

14. Use log laws to evaluate  $3\ln(2) + 2\ln(3) - \ln(72)$ .

15. Sketch the graphs of all three of the following functions on the same set of axes below. Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes.

$$f(x) = x$$
$$g(x) = e^{x}$$
$$h(x) = \ln(x)$$



16. Let  $f(x) = \ln(1 - 6x)$ . State the domain of f using interval notation.

17. Sketch the graph of  $f(x) = -\log_5(x-3)$ . Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. State the domain and range using interval notation.

| _ |   | _ | _ | _ | <br>  | _ | _ |   | _ | <br>_ |   | _ | _ | _ | _ |   | <br> | _ |
|---|---|---|---|---|-------|---|---|---|---|-------|---|---|---|---|---|---|------|---|
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   | - |   |   |   | <br>_ |   |   |   |   | _     | _ |   |   |   |   |   |      | _ |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
|   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |   |   |      |   |
| _ | _ |   | _ | _ | _     | _ | _ | _ | _ |       |   | _ | _ | _ |   | _ | _    |   |

18. Solve:  $2\ln(x) = \ln(2) + \ln(3x - 4)$ .

19. Solve:  $\log_5(x+1) - \log_5(x-1) = 2$ .

20. Solve:  $\log(x+2) + \log(x-1) = 1$ .