You have 2hr 15min. Answer each non-graph question neatly on the line provided.

Name:

ID: \qquad

1. (4 points) Simplify $\left(\frac{2 a^{-1} b}{a^{4} b^{-2}}\right)^{3}$ and eliminate negative exponents.

$$
=\left(\frac{2 b^{3}}{a^{5}}\right)^{3}=\frac{2^{3}\left(b^{3}\right)^{3}}{\left(a^{5}\right)^{3}}=\frac{8 b^{9}}{a^{15}}
$$

1.

2. (4 points) Simplify $64^{-\frac{1}{2}}$ completely.

$$
=\frac{1}{64^{1 / 2}}=\frac{1}{\sqrt{64}}=\frac{1}{8}
$$

3. (4 points) Factor $2 x^{2}+4 x-96$ completely.

$$
\begin{aligned}
& 2\left(x^{2}+2 x-48\right) \\
& 2(x+8)(x-6)
\end{aligned}
$$

$$
\text { 3. } 2(x+8)(x-6)
$$

4. (4 points) Sketch the graph of $f(x)=-2^{x+1}+3$. Label all asymptotes on your graph for full credit.

5. (4 points) Perform the addition $\frac{4}{x^{2}}+\frac{9}{x^{2}+6}$ and simplify as one reduced fraction.

$$
\begin{aligned}
& \angle C D=x^{2}\left(x^{2}+6\right) \\
& \frac{4\left(x^{2}+6\right)+9 x^{2}}{x^{2}\left(x^{2}+6\right)}=\frac{13 x^{2}+24}{x^{2}\left(x^{2}+6\right)}
\end{aligned}
$$

$$
\text { 5. } \frac{13 x^{2}+24}{x^{2}\left(x^{2}+6\right)}
$$

6. (4 points) Perform the multiplication $\frac{4 x^{2}}{x^{2}-81} \cdot \frac{2 x+18}{16 x}$ and simplify as one reduced fraction.

$$
\frac{\sqrt[4]{4}(x) x}{(x+9)(x-9)} \frac{x(x+9)}{[4 x] 2 \cdot 2}=\frac{x}{2(x-9)}
$$

6. $\frac{x}{2(x-9)}$
7. (4 points) Find all solutions x to $\frac{2}{x+2}-\frac{4}{x^{2}}=0$.

$$
\left.\begin{array}{rlrl}
x^{2}(x+2)\left(\frac{2}{x+2}-\frac{4}{x^{2}}\right) & =(0) x^{2}(x+2 & & x^{2}-2 x-4=0
\end{array}\right) x=1 \pm \sqrt{5}
$$

8. (4 points) Sketch the graph of the piecewise function $\mathrm{f}(\mathrm{x})= \begin{cases}2 x & \text { if } x<-1 \\ 5-x^{2} & \text { if } x \geq-1\end{cases}$

9. (4 points) Find the radius of the circle with equation $x^{2}+y^{2}-\frac{1}{2} x+\frac{1}{2} y=\frac{1}{8}$.

$$
\begin{aligned}
& x^{2}-\frac{1}{2} x+\frac{1}{16}+y^{2}+\frac{1}{2} y+\frac{1}{16}=\frac{1}{8}+\frac{1}{16}+\frac{1}{16} \\
& \left(x-\frac{1}{4}\right)^{2}+\left(y+\frac{1}{4}\right)^{2}=\frac{1}{4} \\
& 4 \\
& r^{2}=\frac{1}{4} \Rightarrow r=\frac{1}{2}
\end{aligned}
$$

$$
\text { 9. } \frac{1}{2}
$$

10. (4 points) Find an equation of the line that passes through the points $(-1,-2)$ and $(7,-6)$.

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-(-2)}{7-(-1)}=\frac{-6+2}{7+1}=\frac{-4}{8}=-\frac{1}{2}$

$$
\begin{aligned}
& y+2=-\frac{1}{2}(x+1) \\
& \text { on } \\
& 10 . y=-\frac{1}{2} x-\frac{5}{2}
\end{aligned}
$$

11. (4 points) Evaluate $\sin \left(-\frac{5 \pi}{12}\right)$.

$$
\begin{aligned}
\sin \left(-\frac{5 \pi}{12}\right) & =-\sin \left(\frac{5 \pi}{12}\right)=-\sin \left(\frac{3 \pi}{12}+\frac{2 \pi}{12}\right)=-\sin \left(\frac{\pi}{4}+\frac{\pi}{6}\right) \\
& =-\left(\sin \frac{\pi}{4} \cos \frac{\pi}{3}+\cos \frac{\pi}{4} \sin \frac{\pi}{3}\right) \\
& =-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}
\end{aligned}
$$

12. (4 points) Sketch the graph of $y=2-|x+10|$.

13. (4 points) Solve $x(2 x+9) \geq 0$ for x. Express the solution using interval notation.

$$
\begin{array}{rl}
\quad 1 \\
x=0 & 2 x+a
\end{array}=0 \quad \begin{aligned}
x & =-\frac{9}{2}
\end{aligned}
$$

14. (4 points)

$$
\text { Find } \cos (t) \text { IF } \sin (t)=\frac{3}{5} \text { AND } \tan (t)<0 .
$$

$$
\begin{array}{l:l}
\sin ^{2} t+\cos ^{2} t=1 \\
\cos ^{2} t=1-\sin ^{2} t \\
\cos t= \pm \sqrt{1-\sin ^{2} t} & \sin C \in \operatorname{TAN}(t)=\frac{\sin (t)}{\cos (t)} \text { is NEGAINE, AND } s \\
\cos (t) \text { MUST BE NE } \\
\cos (t)=-\sqrt{1-\left(\frac{3}{5}\right)^{2}} \longrightarrow-\frac{4}{5}
\end{array}
$$

15. (4 points) Find the average rate of change of $f(t)=t-\frac{2}{t}$ between $t=\frac{-1}{4}$ and $t=\frac{1}{2}$.

$$
\begin{aligned}
& \frac{f\left(\frac{1}{2}\right)-f\left(-\frac{1}{4}\right)}{\frac{1}{2}-\left(-\frac{1}{4}\right)}=\frac{\left(\frac{1}{2}-4\right)-\left(-\frac{1}{4}+8\right)}{3 / 4}=\frac{4}{3}\left(\frac{1}{2}-4+\frac{1}{4}-8\right) \\
& =\frac{4}{3}\left(\frac{3}{4}-12\right)=1-16=-15
\end{aligned}
$$

15. \qquad -15
16. (4 points) SKEKCH THE GRAPH of ONE COMPCEE PERLOD of THE FUNCTION $y=-3 \sin \left(\frac{1}{4} x\right)$. LABEL ALL INGGCEMS, MAXIMUMS, AND MINIMUMS.

-) sin curve reflected Across $x-A \times 1 S$
-) Amplitude 3
-) $\operatorname{kenlud} \frac{2 \pi}{4}=\frac{\pi}{2}$
17. (4 points) Find the inverse function of $f(x)=\frac{1}{x+9}$.

$$
\begin{array}{r}
x=\frac{1}{y+9} \quad \Rightarrow \quad y+9=\frac{1}{x} \\
y=\frac{1}{x}-9
\end{array}
$$

17. $f^{-1}(x)=\frac{1}{x}-9$
18. (4 points) Evaluate and simplify $f(10+h)-f(10)$ when $f(x)=-2 x^{2}+x+5$.

$$
\begin{array}{rlrl}
f(10+h) & =-2(10+h)^{2}+(10+h)+5 & f(10) & =-2(10)^{2}+(10)+5 \\
& =-2 h^{2}-39 h-185 & & =-200+15=-185 \\
f(10+h)-f(10) & =-2 h^{2}-39 h-185-(-185) & =-2 h^{2}-39 h
\end{array}
$$

$$
\text { 18. }-2 h^{2}-39 h
$$

\boldsymbol{x}	1	2	3	4	5	6
$\boldsymbol{f}(\boldsymbol{x})$	2	3	5	1	6	3
$\boldsymbol{g}(\boldsymbol{x})$	3	4	1	5	2	6

to evaluate

since $g(5)=2, \quad g^{-1}(2)=5$.
lien $g\left(f\left(g^{-1}(2)\right)\right)=g(f(5))=g(6)=6$
19. \qquad
20. (4 points) In 2010 the deer population in a Pennsylvania county was 20000 . In 2014 the deer population in the county had grown to 31000 . Assuming the deer population in the county is growing exponentially, approximate the county's deer population in 2023. (You may leave \log or e in your answer.)

$$
\begin{aligned}
& n(t)= n_{0} e^{r t} \\
& n(0)=n_{0}=20,000 \\
& n(4)=20,000 e^{r 4}=31,000 \\
& e^{r 4}=\frac{31}{20} \\
& e^{r}=\left(\frac{31}{20}\right)^{1 / 4} \Rightarrow r=\frac{1}{4} \ln \left(\frac{31}{20}\right) \quad 200,000\left(\frac{31}{20}\right)^{\frac{13}{4}} \\
& n(13)=20,000\left(\frac{31}{20}\right)^{\frac{13}{4}} \text { on } 20,000 e^{\frac{1}{4} \ln \left(\frac{31}{20}\right) \cdot 13}
\end{aligned}
$$

21. (4 points) Evaluate $\log _{36}\left(\frac{1}{6}\right)$.

$$
\begin{aligned}
& =\log _{36}(1)-\log _{36}(6) \\
& =0-\frac{1}{2}=-\frac{1}{2}
\end{aligned}
$$

\qquad
22. (4 points) Solve $2 \log x=\log 2+\log (4 x-6)$ for x.

$$
\begin{aligned}
& \begin{aligned}
\log \left(x^{2}\right) & =\log (8 x-12) \longrightarrow \log 36=\log (4 \varepsilon-12) \\
x^{2} & =8 x-12 \\
x^{2}-8 x+12 & =0 \\
(x-6)(x-2) & =0 \\
x & =6 \quad x=2
\end{aligned} \\
& \text { 23. (4 points) Find the length } s \text { of the circular arc }(16-12)
\end{aligned}
$$

$S=r \theta$ WHEN θ is MEASVIGD is RADIANS.

$$
1200 \in 6 \cdot \frac{\pi \text { rAD }}{180 D \in G}=\frac{2 \pi}{3}
$$

23.

$$
\frac{32 \pi}{3}
$$

Note: The given θ is net The angle connespondwo 10 S . we NEED $\theta=2 \pi-\frac{2 \pi}{3}=\frac{4 \pi}{3}$

$$
\Rightarrow \quad s=8 \cdot \frac{4 \pi}{3}=\frac{32 \pi}{3}
$$

24. (4 points) A 22-ft ladder leans against a building so that the angle between the ground and the ladder is 30°. How high does the ladder reach on the building?

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{h}{22} \\
\Rightarrow h & =22 \sin 30^{\circ} \\
& =22\left(\frac{1}{2}\right)=11
\end{aligned}
$$

24. \qquad $11 f_{t}$
25. (4 points) Evaluate $\operatorname{SiN}^{-1}\left(\cos \left(\frac{7 \pi}{6}\right)\right)$.

$$
\cos \left(\frac{7 \pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}
$$

$$
\text { \& reference } \#
$$

25. $-\frac{\pi}{3}$

$$
\sin ^{-1}\left(\cos \left(\frac{7 \pi}{6}\right)\right)=\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}
$$

Because $\sin \left(-\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$ and $-\frac{\pi}{2} \leqslant-\frac{\pi}{3} \leqslant \frac{\pi}{2}$

