\$ 10.2 Proof BY STRONG INDUCTION

To SHOW P(1) A P(2) A P(3) A ...

(1) BASIS: SAW EXPLICITLY THAT PLI) IS TRUE (ON WHATEVER FIRST CASE IS)

(STRONG INDUCTION : SHOW THM (PINAPLENA... APLA) => P(n+1)

CX. THM. EVENY INTEGER N=2 HAS A PRIME FACTORIZATION.

PROF: PROOF BY STRUDG INDUCTION. (BASIS) OBSERVE THAT FOR N=2, 2 IS PRIME. THUS 2 IS ITS OWN PRIME FACTORIZATION.

> (STRANG INDUCTION) Now we assume all integens 2 = k = n. HAVE PRIME FACTORIZATIONS AND MUST SHOW n+1 HAS A PRIME FACTORIZATION.

(CASE 1) IF N+1 IS PRIME, THEN IT IS IT'S DWW PRIME FACTORIZATION ~

(CASE 2) IF n+1 is Not PRIME, THEN WE HAVE n+1=ab For Some instegens $2 \le a, b \le n$. Both $a \le b$ have prime Factorizations, say

$$a = p_1 p_2 \cdots p_j = 4 \quad b = p_1' p_2' \cdots p_k'$$

THEN

$$n+1 = ab = (p_1, p_2, \dots, p_j)(p_1, p_2', \dots, p_k')$$

IS A PRIME FACTURIZATION OF R+1.

Event Wahar Wheth in Case be warthed as a sum of District
bod reported to the indiced Powers of 2.
There: We proceed by States inductions.
(Basis) observe that
$$1 = 2^{\circ}$$
, thus the result heres for $n = 1$.
Istitude induced water are next heres for all when howevers $\leq n$.
We want show the result heres for $n+1$.
Let l be the landest independent such that $2^{l} \leq n+1$.
Set $m = (n+1) - 2^{l}$, so $n+1 = 2^{l} + m$.
Since $2^{l} > 1$, it returns that $0 \leq n \leq n$.
(case 1) if $n = 0$ these $n+1 = 2^{l} \checkmark$
(case 2) if $1 \leq m \leq n$ there by location that 2^{l}
(case 2) if $1 \leq m \leq n$ there $2^{l} + 2^{l} + 2^{l} + 2^{l}$.
And if Fouriers that
 $n+1 = 2^{l} + 2^{l} + 2^{l} + 2^{l} + 2^{l} + 2^{l}$.
And if Fouriers that
 $n+1 = 2^{l} + 2^{l} + 2^{l} + 2^{l} + 2^{l} + 2^{l} + 2^{l}$.
Some sits that are fourtient of $l \neq a_{l}$ for any $1 \leq l \leq j$.
Then remains its to show that $l \neq a_{l}$ for any $1 \leq l \leq j$.
Some $2^{l} + 2^{l} + 2^{l} + 2^{l} + \dots + 2^{l}$.
 $n+1 = 2^{l} + 2^{l} + 2^{l} + 2^{l} + \dots + 2^{l}$.

THEREFOLE $2^{\ell+1} \leq n+1$. But This contradicts the FACT THAT ℓ is the Landers Insteaded such THAT $2^{\ell} \leq n+1$.

\$ 10.3 Theor BY SMALLEST COUNTEREXAMPLE

Outline for Proof by Smallest Counterexample

Proposition The statements $S_1, S_2, S_3, S_4, \ldots$ are all true.

Proof. (Smallest counterexample)

- (1) Check that the first statement S_1 is true.
- (2) For the sake of contradiction, suppose not every S_n is true.
- (3) Let k > 1 be the smallest integer for which S_k is **false**.
- (4) Then S_{k-1} is true and S_k is false. Use this to get a contradiction.
- ex. For every integer n ≥ 7, There exist <u>Positive</u> integers a i b such that n = 2a + 3b.
- PICOF: (PICOF BY SMALLEST CONSTEREXAMPLE)
 - (1) FIRST OBSERVE THAT 7 = 2.2 + 3.1 & B = 2.1 + 3.2 So THE RESULT HOLDS FOR N=7 & N=6.
 - For sake of Castrudiction, Suppose Not event integer n ≥ 7.
 Can be circulated as 2a + 2b For some Positive integers a, b.
 - (3) let k > 1 be the swallest insteger ≥ 7 For which be such a b exist.

(4) Since nested holds For n=7,6, we know k=9, and k-2=7. Since k-2 is less than smallest integer =7 For which No such a, b exist. We have for the integers x, y with k-2 = 2x + 3y. Then K = (K-2)+2 = 2x + 3y + 2 = 2(x + 1) + 3y. Setting $\alpha = x + 1 \in \mathbb{Z}$ and $b = y \in \mathbb{Z}$, we see k = 2a + 3b. This contributs the Definitions of k' (see hard (s)).

(COULD WE HAVE USED STRUDG INDUCTION INSTEAD?)

EX
$$\forall n \in \mathbb{N}$$
, $24 | (5^{2n} - 1)$.
Proof. (Prive by SMALLEST COUNTEREXAMPLE)
FIRST OBSERVE THAT FOR $n=1$, $5^{2} - 1 = 25 - 1 = 24 \cdot 1$
SHOW THAT $24 | (5^{2n} - 1)$.
NOW ASSULE, FOR SAKE OF CONTROLOWS, THAT H IS DOT THUE
THAT $24 | (5^{2n} - 1)$ FOR ALL NEN.
Let k be the SMALLEST POSITIVE INSEGER SUCH THAT $24 \times (5^{2k} - 1)$.
THEN $24 | (5^{2(k-1)} - 1)$, AND SO $5^{2(k-1)} - 1 = 24 \times$ For some $\times \in \mathbb{N}$.
MULTRIVING Both sides by 25 Gives
 $25 \cdot 5^{2(k-1)} - 25 = 25 \cdot 24 \times$
 $5^{2k} - 1 = 25 \cdot 24 \times + 24 = 24 (25 \times + 1)$,
MULTRIVING $25 \times 1 \in \mathbb{Z}$. THEREFORE $24 | 5^{2k} - 1$. $\Longrightarrow \in$
This is a commutation. This our assumption is face ξ if is the that
 $24 | (5^{2k} - 1) \vee 1 \in \mathbb{N}$.