CH 11: Reastions
§ 11.1 Relaimos
Faliliar wats math cbsects can be "reheleo":

$$
\begin{aligned}
& 3<4 \quad \frac{21}{14}=\frac{3}{2} \quad 8 / 24 \quad 7 \nmid 24 \\
& 8 \equiv 13(M 00 \text { S }) \quad 2 \in \mathbb{N} \quad \mathbb{N} \leqslant \mathbb{Z} \quad A \neq \varnothing \\
& \text { C. (Ossel 1) nemitum (osecer 2) } \\
& \text { srubar expressing } \\
& \text { some recalicnship } \\
& \text { Belween obsects } \\
& <, \leq,{ }_{2} \geq,=, \neq \\
& \epsilon_{1} \subseteq, \not, \notin,{ }^{\prime} \neq, \epsilon \in c .
\end{aligned}
$$

other relaliows?
Nembers

- same/differgar Panity
- muliplicaline muerse
- have same abs val.
- have same sion
- only conmen factor is one
os many

Goal: Dging what a reiation is in a way that includes all of The above as sust specific examples.

THEN use THS DEFANIIINN TO BEGIN STUDYING ALL
recallous al ance, in general.
ex. Les $A=\{1,2,3,4\}$
write down an of the"<"- nelakiad statements between elements in A.

$$
\begin{array}{ll}
1<2, & 1<3,1<4, \\
2<3, & 2<4 \\
3<4
\end{array}
$$

ArRow From a To b VF $a<b$.

So tie relation "L" on A can be gaccodeo as a set

$$
R_{<}=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\} \subseteq A \times A
$$

ex. What subset of $A \times A$ encores the brechtian " $=$ " an sal A

$$
\begin{aligned}
& 1=1,2=2,3=3, \quad 4=4 \\
& R=\{(1,1),(2,2),(3,3),(4,4)\} \subseteq A \times A \\
& a=b \Leftrightarrow(a, b) \in R=
\end{aligned}
$$

Definition 11.1 A relation on a set A is a subset $R \subseteq A \times A$. We often abbreviate the statement $(x, y) \in R$ as $x R y$. The statement $(x, y) \notin R$ is abbreviated as $x R y$.
ex. Let $A=\{1,2,3,4,5,6\}$ \&

$$
R=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}
$$

Can you describe the racsand in walls? ADD to 8 using set-Bullogr Notates?

$$
\Pi=\{(a, b) \in A \times A: a+b=8\}
$$

ex. Use sel-buindar Notation to describe tie Relation $<$ an \mathbb{Z}.

$$
R_{<}=\{(a, b) \in \mathbb{R} \times \mathbb{Z}: b-a \in \mathbb{N}\}
$$

ex. Use sel-buicoser Notation to describe tie relation \leq an \mathbb{R}.

$$
\left.\begin{array}{r}
\mathbb{R}_{<}=\{(a, b) \in \mathbb{R} \times \mathbb{R}:|b-a|=b-a\} \\
\left(\begin{array}{cc}
a & \sqrt{b-a}
\end{array} \in \mathbb{R}\right.
\end{array}\right)
$$

ex. If $|A|=5$, how many different reatlinds are there OD THE SEA A?
\rightarrow How many differed subsets of $A \times A$ ane there?

$$
\begin{aligned}
& |A \times A|=|A| \times|A|=5 \times 5=25 \\
& |P(A \times A)|=2^{|A \times A|}=2^{25}
\end{aligned}
$$

In the following exercises, subsets R of $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ or $\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}$ are indicated by gray shading. In each case, R is a familiar relation on \mathbb{R} or \mathbb{Z}. State it.
12.

13.

14.

15.

ex. RECALL: on $A=\{1,2,3,4\}$

$$
\begin{aligned}
& a<b \Leftrightarrow(a, b) \in R_{<}=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\} \\
& a=b \Leftrightarrow(a, b) \in R_{=}=\{(1,1),(2,2),(3,3),(4,4)\}
\end{aligned}
$$

Wan peualuas does $R_{<} \cup R=$ define? \leq

> DOUE: Recalions ane sets and so we can apply sell delarans \cap, \cup, To relallows.

S11.2 Properties of Resins

$\dot{\varepsilon}$ den sentences: $x<y$ (Truth value peplos as x, y)
So we may combine relational expressions with
local operations $(\wedge, \vee, \Rightarrow, \Leftrightarrow, \sim, \in 1 c$.
$\dot{\xi}$ Quavitiens (\forall, \exists).

Definition 11.2 Suppose R is a relation on a set A.

1. Relation R is reflexive if $x R x$ for every $x \in A$. That is, R is reflexive if $\forall x \in A, x R x$.
2. Relation R is symmetric if $x R y$ implies $y R x$ for all $x, y \in A$.

That is, R is symmetric if $\forall x, y \in A, x R y \Rightarrow y R x$.
3. Relation R is transitive if whenever $x R y$ and $y R z$, then also $x R z$. That is, R is transitive if $\forall x, y, z \in A,((x R y) \wedge(y R z)) \Rightarrow x R z$.

REFLEXIVE:

Transitive
ex.

Relations on $\mathbb{Z}:$	$<$	\leq	$=$	\mid	\nmid	\neq
Reflexive	no	yes	yes	yes	no	no
Symmetric	no	no	yes	no	no	yes
Transitive	yes	yes	yes	yes	no	no

JOHN ADAMSKI

Theorem 1. The relation \mid (divides) on the set \mathbb{Z} is reflexive and transitive but not symmetric.
Proof. We have three statements to prove, and we will do so one at a time.
First, to prove that the relation \mid on \mathbb{Z} is reflexive, we must show that for all $a \in \mathbb{Z}$, $a \mid a$.

$$
\forall a \in \mathbb{Z}, a \mid a
$$

So let $a \in \mathbb{Z}$. Since $a=a \cdot 1$ and $1 \in \mathbb{Z}$, this shows that $a \mid a$ by defintition.
Second, to show that the relation \mid on \mathbb{Z} is transitive, we must show that

$$
\forall a, b, c \in \mathbb{Z} \text {, if } a \mid b \text { and } b \mid c, \text { then } a \mid c .
$$

Suppose $a, b, c \in \mathbb{Z}, a \mid b$, and $b \mid c$. Then, by definition, there exist $m, n \in \mathbb{Z}$ such that $b=m a$ and $c=n b$. It follows that $c=n(m a)=(n m) a$. Since $m n \in \mathbb{Z}$, this shows that $a \mid c$.

Finally, to show that | is not symmetric on \mathbb{Z} we must show

$$
\sim(\forall a, b \in \mathbb{Z}, \text { if } a \mid b \text { then } b \mid a)
$$

That is, we must show

$$
\exists a, b \in \mathbb{Z}, \text { such that } a \mid b \text { and } b \nmid a \text {. }
$$

It is enough to provide an example. Let $a=3$ and $b=6$. Since $6=2 \cdot 3$, and $2 \in \mathbb{Z}$, we see that $3 \mid 6$. Now assume for sake of contradiction that $6 \mid 3$. Then $3=6 n$ for some $n \in \mathbb{Z}$. However, this implies that $3 / 6=n$ is an integer. Since $3 / 6=1 / 2$ is not an integer, this is a contradiction. Thus, our assumption that $3 \mid 6$ must be false. Therefore, since 3 and 6 are integers such that $3 \mid 6$ and $6 \nmid 3$, we see that the relation | on \mathbb{Z} is not symmetric.

Department of Mathematics, Fordham University
Email address: adamski@fordham.edu
URL: www.johnadamski.com

