

 $R \subseteq A \times A$

VxeA, XRX Vx, yeA, XRy => yRX Vx, y, zeA, (xRy ~ yRz)=> xRz

Figure 11.2. Examples of equivalence relations on the set $A = \{-1, 1, 2, 3, 4\}$

OBSENVATION: AN EQUIVALENCE RELATION ON A DIVIDES A INTO (DISSONT) SUBSETS (CALLED EQUIVALENCE CLASSES)

DEF SUPPOSE R IS AN ECONIVALENCE RELATION ON A SET A. GIVEN ANY ELEMENT AEA, THE ECONIVALENCE CLASS CONTAINING OF IS THE SUBSET [XEA: X Ra} OF A CONSISTING OF ALL ELEMENTS OF A THAT THELATE TO A. THIS SET IS DENOTED [A].

[a] = [xed : xRa}

3. Let $A = \{a, b, c, d, e\}$. Suppose *R* is an equivalence relation on *A*. Suppose *R* has three equivalence classes. Also aRd and bRc. Write out *R* as a set.

4. Let $A = \{a, b, c, d, e\}$. Suppose *R* is an equivalence relation on *A*. Suppose also that aRd and bRc, eRa and cRe. How many equivalence classes does *R* have?

12. Prove or disprove: If *R* and *S* are two equivalence relations on a set *A*, then $R \cup S$ is also an equivalence relation on *A*.

\$11.4 EQUIVALENCE CLASSES AND PARTALONS

The (11.2) SUPPOSE R is AN EQUIVALENCE RELATIONS ON A SET A.
The set
$$f[a]: a \in A \}$$
 of equivalence classes of R
Folds a Partitions of A.
Prove is show (i) $\bigcup [a] = A$, and
 $a \in A$
(i) $(a) \bigcup [a] = A$; let $c \in \bigcup [a]$.
(i) $(a) \bigcup [a] = A$; let $c \in \bigcup [a]$.
 $a \in A$
Then $\exists a \in A$ s.t $c \in [a]$.
(i) $(a) \bigcup [a] = A$; let $c \in A$.
(b) $A \in \bigcup [a]$: let $c \in A$.
Succe $[a] \leq A$, $c \in A$.
(b) $A \in \bigcup [a]$: let $c \in A$.
Succe R is an equivalence relation,
 R is reflexing.
 $\therefore c R c$ and so $c \in I \times A : x R c \} = [c]$.
 $\therefore c \in \bigcup [a]$ (under $a : c$).
 $a \in A$
(c) (counterprove) Suppose $[a] \cap [b] \neq \phi$. (We show $[a] = [b]$.)
Then $\exists \times A$ and $\times R b$.
Succe R is superface.
 $R = A$
 $R = A$