

What About
$$f = \{(x,y) \in \mathbb{Z}^2 : 3x + y^2 = 4 \}$$
?
 $y = \frac{1}{\sqrt{4-3x}}$

CX.

TYPICALLY WRITTEN
$$Y(m,n)$$

EX. Let $\Psi: \mathbb{Z}^{2} \to \mathbb{Z}$ be defined as $\Psi((m,n)) = 12m + 4n$.
THAT is, $\Psi = \{((m,n), 12m + 4n): (m,n) \in \mathbb{Z}^{2}\}$.
WHAT ANCE DOMANN, CORDINAUL, AND PRIVACE?
 \mathbb{Z}^{2} \mathbb{Z} \downarrow
PRANCE = $\{12m + 4n : (m,n) \in \mathbb{Z}^{2}\} = \{4(3m + n): (m,n) \in \mathbb{Z}^{2}\}$
 $\in \{4p : p \in \mathbb{Z}\}$
AND $\{4p : p \in \mathbb{Z}\} = \{4(3p - 2p): p \in \mathbb{Z}\} : \{12p + 4(-2p): p \in \mathbb{Z}\}$
 $\subseteq \{12m + 4n : (m,n) \in \mathbb{Z}^{2}\}$
 \therefore RANCE = $\{4p : p \in \mathbb{Z}\}$

Note: When are two Functions
$$f:A - B \notin \int: C - D \in QUAR?$$

FUNCTIONS are sets! $f \in A \times B \notin \int \subseteq C \times D$
 $f : \{[a, i], [b, 4], [c, 4]\}$
 $g = \{[c, 4], [a, i], [b, 4]\}$
These Functions are Equal as sets.
Note that the set of an First components of ordered Pairs (DOMAINS)
Hubble Course, And $f[x] : f[x]$ For all x in DOMAINS.

Definition 12.3 Two functions $f : A \to B$ and $g : A \to D$ are **equal** if f = g (as sets). Equivalently, f = g if and only if f(x) = g(x) for every $x \in A$.

\$12.2 INSECTIVE & SUBJECTIVE FUNCTIONS

Definition 12.4 A function $f : A \rightarrow B$ is:

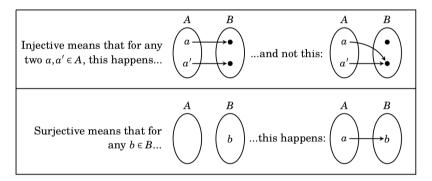
- 1. **injective** (or *one-to-one*) if for all $a, a' \in A$, $a \neq a'$ implies $f(a) \neq f(a')$;
- 2. **surjective** (or *onto B*) if for every $b \in B$ there is an $a \in A$ with f(a) = b;
- 3. **bijective** if *f* is both injective and surjective.

INSECTIVE: Va, a' eA, a => f(a) = f(a').

Not inserive: Ja, a' A, a = a' A fla) = fla').

sunsective: YbeB, JacA, flal: flb).

Not sursective: IbeB, Vaek, f(a) + f(b).



1. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Give an example of a function $f : A \to B$ that is neither injective nor surjective.

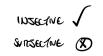
How to show a function $f : A \rightarrow B$ is injective:

Direct approach: Suppose $a, a' \in A$ and $a \neq a'$. . Therefore $f(a) \neq f(a')$. Contrapositive approach: Suppose $a, a' \in A$ and f(a) = f(a'). : Therefore a = a'.

How to show a function $f : A \rightarrow B$ is surjective:

Suppose $b \in B$. [Prove there exists $a \in A$ for which f(a) = b.]

5. A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined as f(n) = 2n + 1. Verify whether this function is injective and whether it is surjective.



13. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the formula $f(x, y) = (xy, x^3)$. Is f injective? Is it surjective? Bijective? Explain.

Nor insective:
$$(0,1) \neq (0,2)$$
 and $f(0,1) = f(0,2) = (0,0)$
Not sursective: Assume for same of constrained that $f(x,y) = (1,0)$.
Then $xy = 1$ and $x^3 = 0$
But $x^3 = 0 = 3 \times = 0 = 3 \times y = 0 = 3 \ll$
 $\therefore = f(x,y) \in \mathbb{R}^2$, $f(x,y) = (1,0)$.

14. Consider the function $\theta : \mathscr{P}(\mathbb{Z}) \to \mathscr{P}(\mathbb{Z})$ defined as $\theta(X) = \overline{X}$. Is θ injective? Is it surjective? Bijective? Explain.

Bisective V