3 12.3 THE PILEONHOLE PRINCIPLE NEWSPED

AT NIGHT A FLOCK OF PIDEONS ALL SLEEP IN A COLLECTION OF PIGEONHOLES. DEFINE A FUNCTION f: PIGEONS - PIGEONHOLES AS f(x) = THE RIBEONHULE THAT X SLEEPS IN.

Figure 12.4. The pigeonhole principle

IF # PIGEOUS > # PIGEONHUES THEN AT LEAST ONE PIGEONHUE WILL OWTAIN AT LEAST 2 PIGEONS. IF # PIBEOUS < # PIBEOUHUES THEIS M LEAST ONE PIBEOUHUE WIL BE EN174.

> The Pigeonhole Principle (function version) Suppose *A* and *B* are finite sets and $f : A \rightarrow B$ is any function. 1. If |A| > |B|, then *f* is not injective. 2. If |A| < |B|, then *f* is not surjective.

ex. There Exist 2 redue with the exact same wither of Frencies.

CK. IF A IS ANY SET OF 6 INTEGERS BETWEEN I & 10, THEN THERE CHIST 2 DIFFERENT SUBSETS X = A & Y = X FOR WHICH THE SUM OF ELEMENTS IN X EDUALS THE SUM OF CLEMENTS IN Y.

e.g. IF
$$A = \{6, 8, 1, 3, 9, 2\}$$

X = $\{9\}$, Y = $\{6, 3\}$ or
X = $\{8, 3\}$, Y = $\{9, 2\}$

ProoF: Let A = {1,2,..., 103 WITH IA]=6.

Notice that if We ADD UP ALL THE ELENGENTS OF A, THE SUM IS LESS THAN 5+6+7+8+9+10 = 45. DEFINE f: ((A) - 20, 1, 2, ..., 45 } AS $f(X) = \sum_{x \in X} x = THE SUM OF ALL ELEMENTS IN X,$ $x \in X WHERE X = A.$ THAT is, $f = \{(X, n) \in \mathcal{G}(A) \times \{0, 1, ..., 45\}; \sum_{x \in X} x = n \}.$ THEN $|P(A)| = 2^{|A|} = 2^6 = 64$, AND $|\{0, 1, ..., 45\} = 46$. : BY PIGEONHOLE PLUXIPLE, F CANNOT BE INSELTIVE. There had exist two district subsets $X, Y \in A$ (even every of $\theta(A)$) such that f(X) = f(Y).

Iny For FUN

^{4.} Consider a square whose side-length is one unit. Select any five points from inside this square. Prove that at least two of these points are within $\frac{\sqrt{2}}{2}$ units of each other.

^{6.} Given a sphere *S*, a *great circle* of *S* is the intersection of *S* with a plane through its center. Every great circle divides S into two parts. A hemisphere is the union of the great circle and one of these two parts. Prove that if five points are placed arbitrarily on *S*, then there is a hemisphere that contains four of them.

312.4 Composition

Definition 12.5 Suppose $f : A \to B$ and $g : B \to C$ are functions with the property that the codomain of f equals the domain of g. The **composition** of f with g is another function, denoted as $g \circ f$ and defined as follows: If $x \in A$, then $g \circ f(x) = g(f(x))$. Therefore $g \circ f$ sends elements of A to elements of C, so $g \circ f : A \to C$.

.) RANGE OF $f \in DOMAIN OF a$ CODOMAIN OF <math>f = DOMAIN OF a

·) COMPOSITIONS ARE CARRIED OUT RUGH-16-LEFT:

$$g \circ f = g(f(x))$$

ex.

Surrose
$$A = \{ \{1, 2, 3, 4\}, B : \{ \{5, 6, 7\}, C = \{ \{8, 9\} \}$$

 $f : A = B, f = \{ (1, 6), (2, 5), (3, 5), (4, 7) \}$
 $g : B \to C, g = \{ \{5, 8\}, (6, 8), (7, 9) \}$
Find $g \circ f$. Why is fog woefficed?

EX. Survive
$$f:A \rightarrow B \notin q: B - C$$
. Alle INSECTIVE,
THEN Johns Insective.
There let a, a' $\in A$.
We need to show that if $a \neq a'$,
then Johns the carticularity established:
If $q \circ f(a) \neq g \circ f(a')$.
Let us now the carticularity established:
IF $q \circ f(a) = g \circ f(a')$ then $a = a'$.
Assume $g \circ f(a) : g \circ f(a')$. Since g is insective, $f(a) = f(a')$.
Since f is insective, $a = a'$.
EX. Suppose $f:A \rightarrow B \notin g:B - C$. Are subsective,
Then Johns in subsective.
Then Johns is insective.
More g is subsective.
Since g is subsective.
Since g is subsective.
Then $g \circ f(a) : g(f(a)) = g(b) = C$.
Since $f is subsective.$
Thus, $g \circ f(a) : g(f(a)) = g(b) = c$.

Proof:
let
$$a \in A$$
 be and element in A .
We need to show that $hologof(a) = hoglof(a)$.
set $f(a) = b \in B$, $g(b) = c \in C$, and $h(c) = d \in D$.
Then $gof(a) = g(f(a)) = g(b) = c$ and
 $hog(b) = h(g(b)) = h(c) = d$.

Now
$$k \circ (g \circ f) (a) = h(g \circ f(a)) = h(c) = d = h \circ g(b)$$

= $(h \circ g) \circ f(a)$.