

3. How many lists of length 3 can be made from the symbols *A*, *B*, *C*, *D*, *E*, *F* if...

- (a) ... repetition is allowed.
- (b) ... repetition is not allowed.
- (c) ... repetition is not allowed and the list must contain the letter A.
- (d) ... repetition is allowed and the list must contain the letter A.

83.3 THE ADDITION & SUBTRACTION PRINCIPLES

Fact 3.2 (Addition Principle) Suppose a finite set *X* can be decomposed as a union $X = X_1 \cup X_2 \cup \cdots \cup X_n$, where $X_i \cap X_j = \emptyset$ whenever $i \neq j$. Then $|X| = |X_1| + |X_2| + \cdots + |X_n|$.

3. Five cards are dealt off of a standard 52-card deck and lined up in a row. How many such lineups are there in which all 5 cards are of the same color (i.e., all black or all red)?

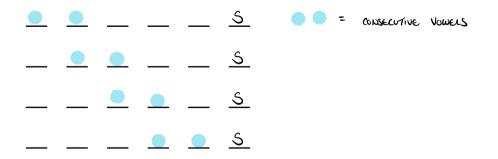
ORDER MATTERS

Fact 3.3 (Subtraction Principle) If *X* is a subset of a finite set *U*, then $|\overline{X}| = |U| - |X|$. In other words, if $X \subseteq U$ then |U - X| = |U| - |X|.

5. How many integers between 1 and 9999 have no repeated digits? How many have at least one repeated digit?

THINK
$$(1 - 0) + (1 + 3) + (2 - 0) + (2 - 0)$$

9. Consider lists of length 6 made from the letters *A*, *B*, *C*, *D*, *E*, *F*, *G*, *H*. How many such lists are possible if repetition is not allowed and the list contains two consecutive vowels?



83.4 FACIONIALS É PERMUTATIONS

n-FACTORIAL

Definition 3.1 If *n* is a non-negative integer, then n! is the number of lists of length *n* that can be made from *n* symbols, without repetition. Thus 0! = 1 and 1! = 1. If n > 1, then $n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1$.

Note:
$$n! = n(n-i)! = n(n-i)(n-2)! = ...$$

Def:

GIVEN A SET X,

A **permutation** of *X* is a non-repetitive list made from all elements of *X*. A **k-permutation** of *X* is a non-repetitive list made from k elements of *X*.

Thus # PEAMUTATIONS OF A SET WITH IN ELEMENTS IS IN!

Fact 3.4 A **k-permutation** of an *n*-element set is a non-repetitive length-k list made from elements of the set. Informally we think of a k-permutation as an arrangement of k of the set's elements in a row.

The number of *k*-permutations of an *n*-element set is denoted P(n,k), and

 $P(n,k) = \underbrace{n(n-1)(n-2)\cdots(n-k+1)}_{k \text{ Factors}}.$ If $0 \le k \le n$, then $P(n,k) = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}.$

15. In a club of 15 people, we need to choose a president, vice-president, secretary, and treasurer. In how many ways can this be done?