

CONDITIONAL STATEMENTS

RECALL:
$$P(x) \Rightarrow Q(x) = \forall x \in \{x : P(x)\}, Q(x)$$

 $\sim (P(x) \Rightarrow Q(x)) = \sim (\forall x \in \{x : P(x)\}, Q(x))$
 $= \exists x \in \{x : P(x)\}, Q(x)$
To DISPROVE $P(x) \Rightarrow Q(x)$, ONE CONFIGNERAMPLE X SUCH THAT
 $P(x) \land \sim Q(x)$ is the is sufficient.

- <u>ex.</u> Prove on Disprove:
 - **12.** If $a, b, c \in \mathbb{N}$ and ab, bc and ac all have the same parity, then a, b and c all have the same parity.

The statement is face. As a condensative, let a = 1, b = c = 2. Then ab = (1)(2) = 2, bc = (2)(2) = 4, and ac = (1)(2) = 2 are are even. So ab, bc, AND ac all HAVE SAME RATITY, But a 15 000 WHILE big c ARE EVEN.

\$9.2 DISPRIMING EXISTENCE STATEMENTS

\$9.3 DISPROOF BY COMMADIC/10N

To displace
$$P$$
, Assume P is the $\dot{\epsilon}$ show this leads to A contradictions.
21. There exist prime numbers p and q for which $p - q = 97$.
We displace BH contradictions.
Assume $p \dot{\epsilon} g$ are prime and $p - g = 97$, i.e. $p = g + 97$.
(Case 1) IF $g = 2$ then $p = 99 = 9 \cdot 11$ is not prime = \times
(Case 2) IF $g \neq 2$ then g is odd because 2 is the only even frame.
Since $97 = 2 \cdot 46 + 1$ is odd, it Follows that p is even ,
As it is the sum of two odd numbers.
Therefore $p = 2$. This is a contradiction because $p = g + 97$ $\dot{\epsilon}$ g prime
where $p \geq 99$.