Exam 1 Review

Exam 1 is Friday 2/17 and will cover chapters 1-3 in Book of Proof. The following questions are meant to provide an additional opportunity to practice this material. Solutions are posted to our class website.

- 1. List the elements of the following sets.
 - (a) $\{X \in \mathcal{P}(\{1,2,3\}) : X \in \mathcal{P}(\{1,2\})\}.$
 - (b) $\{X \in \mathcal{P}(\{1,2,3\}) : X \subseteq \mathcal{P}(\{1,2\})\}.$
- 2. Suppose $A = \{0, 1\}$ and $B = \{1, 2\}$. Find:
 - (a) $(A \cap B) \times A$.
 - (b) $\mathcal{P}(A) \mathcal{P}(B)$.
 - (c) $\mathcal{P}(A) \cap \mathcal{P}(B)$.
 - (d) $\mathcal{P}(A \cap B)$.
- 3. Prove using logic that for any three sets A, B and C the following identities hold:
 - (a) $A (B \cup C) = (A B) C$.
 - (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- 4. Translate the following sentences into symbolic logic.
 - (a) If this gas either has an unpleasant smell or it is not explosive, then it is not hydrogen.
 - (b) Having both a fever and a headache is a sufficient condition for George to go to the doctor.
 - (c) Both having a fever and having a headache are sufficient conditions for George to go to the doctor.
 - (d) If $x \neq 2$, then a necessary condition for x to be prime is that x is odd.
- 5. Translate these sentences into symbolic logic, then negate them.
 - (a) The number x is positive, but the number y is not positive.
 - (b) If x is prime, then \sqrt{x} is not a rational number.
 - (c) For every prime number p, there is another prime number q with q > p.
 - (d) If $\sin(x) < 0$, then it is not true than $0 \le x \le \pi$.
- 6. Analyze the logical form of the following statements, then negate them. You may use the symbols $\in, \notin, =, \neq, \land, \lor, \Rightarrow, \Leftrightarrow, \forall$ and \exists in your answers, but not $\subseteq, \notin, \mathcal{P}, \cap, \cup$ or \sim (thus, you must write out the definitions of some set theory notation, and you must use equivalences to get rid of \sim).
 - (a) $A \subseteq B$.
 - (b) $X \in \mathcal{P}(A)$.
 - (c) $X \subseteq \mathcal{P}(A)$.
 - (d) $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
 - (e) $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

7. Let $A = \{n \in \mathbb{N} : n < 10\}.$

- (a) How many disctinct subsets of A are there?
- (b) How many distinct subsets of A with 5 elements are there?
- (c) How many distinct lists with 3 elements taken from A are there?
- (d) How many 8-digit binary strings end in 1 or have exactly four 1's?
- (e) Show that if six integers are chosen at random, then at least two of them will have the same remainder when divided by 5.