Discrete Mathematics, MATH 2001-R01

Exam 1 Review

Solutions

1. (a) We are looking for the subsets X of $\{1,2,3\}$ that are subsets of $\{1,2\}$. Since $\{1,2\} \subseteq$ $\{1,2,3\}$, the answer is simply $\mathscr{P}(\{1,2\})$:

$$
\{\{1\},\{2\},\{1,2\}, \varnothing\} .
$$

(b) We are looking for those sets X such that $X \subseteq\{1,2,3\}$ and $X \subseteq \mathscr{P}(\{1,2\})$. The only possibility is $X=\varnothing$.
2. (a) We have $A \cap B=\{1\}$. Thus

$$
(A \cap B) \times A=\{1\} \times\{0,1\}=\{(1,0),(1,1)\} .
$$

(b) We have $\mathscr{P}(A)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$ and $\mathscr{P}(B)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$. Thus

$$
\mathscr{P}(A)-\mathscr{P}(B)=\{\{0\},\{0,1\}\} .
$$

(c) $\mathscr{P}(A) \cap \mathscr{P}(B)=\{\varnothing,\{1\}\}$.
(d) We have $A \cap B=\{1\}$. Thus, $\mathscr{P}(A \cap B)=\{\varnothing,\{1\}\}$.
3. (a) We have

$$
\begin{gathered}
A-(B \cup C)=\{x: x \in A \wedge \sim(x \in B \vee x \in C)\} \\
=\{x: x \in A \wedge(x \notin B \wedge x \notin C)\}=\{x: x \in A \wedge x \notin B \wedge x \notin C\} \\
=\{x:(x \in A \wedge x \notin B) \wedge \sim(x \in C)\}=\{x:(x \in A-B) \wedge \sim(x \in C)\}=(A-B)-C .
\end{gathered}
$$

(b) We have

$$
\begin{gathered}
A \times(B \cap C)=\{(x, y): x \in A \wedge y \in(B \cap C)\}=\{(x, y): x \in A \wedge y \in B \wedge y \in C\} \\
=\{(x, y): x \in A \wedge y \in B \wedge x \in A \wedge y \in C\} \\
=\{(x, y):(x \in A \wedge y \in B) \wedge(x \in A \wedge y \in C)\} \\
=\{(x, y):(x, y) \in A \times B \wedge(x, y) \in B \times C\}=(A \times B) \cap(A \times C) .
\end{gathered}
$$

4. (a) Let P : "this gas has an unpleasant smell", Q : "this gas is explosive" and R : "the gas is hydrogen". Then the statement can be written as $(P \vee \sim Q) \Rightarrow \sim R$.
(b) Let P : "George has a fever", Q : "George has a headache" and R : "George goes to the doctor". Then the statement can be written as $P \wedge Q \Rightarrow R$.
(c) Same P, Q and R as in (b). The statement can be written as $P \vee Q \Rightarrow R$.
(d) $x \neq 2 \wedge x$ prime $\Rightarrow x$ odd.
5. (a) $R: x>0 \wedge y \leq 0 . \sim R: x \leq 0 \vee y>0$.
(b) $R: x$ prime $\Rightarrow \sqrt{x} \notin \mathbb{Q} . \sim R: \exists x$ prime $\wedge \sqrt{x} \in \mathbb{Q}$.
(c) $R: \forall p$ prime, $\exists q$ prime, $q>p . \sim R: \exists p$ prime, $\forall q$ prime, $q \leq p$.
(d) $\sin (x)<0 \Rightarrow \sim(0 \leq x \leq \pi) . \sim R: \exists x, \sin (x)<0 \wedge 0 \leq x \leq \pi$.
6. (a) $\forall x \in A, x \in B$.

Negation: $\exists x \in A, x \notin B$.
(b) This means $X \subseteq A: \forall y \in X, y \in A$.

Negation: $\exists y \in X, y \notin A$.
(c) This means: $\forall B \in X, B \in \mathscr{P}(A)$, i.e. $\forall B \in X, B \subseteq A$. Thus we can write:
$\forall B \in X, \forall x \in B, x \in A$.
Negation: $\exists B \in X, \exists x \in B, x \notin A$.
(d) We have $X \in \mathscr{P}(A) \wedge X \in \mathscr{P}(B)$, i.e. $X \subseteq A \wedge X \subseteq B$. Thus we can write: $(\forall x \in X, x \in A) \wedge(\forall x \in X, x \in B)$.
Negation: $(\exists x \in X, x \notin A) \vee(\exists x \in X, x \notin B)$.
(e) This means: $\forall X \in \mathscr{P}(A), X \in \mathscr{P}(B)$, i.e. $\forall X, X \subseteq A \Longrightarrow X \subseteq B$. We can then write: $\forall X,(\forall y \in X, y \in A) \Longrightarrow(\forall y \in X, y \in B)$.
Negation: $\exists X,(\forall y \in X, y \in A) \wedge(\exists y \in X, y \notin B)$.
7. (a) Suppose x is even. Then $x=2 k$, for some $k \in \mathbb{Z}$. Thus, $3 x+5=6 k+5=2(3 k+2)+1$ is odd. Conversely, suppose $3 x+5$ is odd. We want to prove that x is even. By contrapositive, suppose x is odd. Thus, $x=2 k+1$, for some $k \in \mathbb{Z}$. Therefore, $3 x+5=$ $3(2 k+1)+5=6 k+8=2(3 k+4)$ is even, which proves the statement.
(b) Let $a \in \mathbb{Z}$ and suppose $14 \mid a$. Then $a=14 k$, for some $k \in \mathbb{Z}$. Thus, $a=2(7 k)=7(2 k)$, meaning that $2|a \wedge 7| a$. Conversely, suppose $2|a \wedge 7| a$. Then $a=2 k \wedge a=2 t$, for some $k, t \in \mathbb{Z}$. It follows that $2 k=7 t$, which implies that t must be even. Thus, $t=2 h$, for some $h \in \mathbb{Z}$. Therefore, $a=7 t=14 h$, and $14 \mid a$.
(c) By contradiction, suppose $\alpha \in \mathbb{Q}$ is a rational solution of $x^{3}+x+3=0$, i.e. $\alpha^{3}+\alpha+$ $3=0$. Since $\alpha \in \mathbb{Q}$, we can write $\alpha=\frac{p}{q}$, where $p, q \in \mathbb{Z}, q \neq 0$, and $\operatorname{gcd}(p, q)=1$. We expand and obtain

$$
\frac{p^{3}}{q^{3}}+\frac{p}{q}+3=0 \Longrightarrow p^{3}+p q^{2}+3 q^{3}=0 .
$$

Notice that p and q cannot be both even, since $\operatorname{gcd}(p, q)=1$. We then proceed by cases.
Case 1: p is even and q is odd. Then $p=2 k$ and $q=2 t+1$, for some $k, t \in \mathbb{Z}$. This implies

$$
\underbrace{(2 k)^{3}}_{\text {even }}+\underbrace{2 k(2 t+1)^{2}}_{\text {even }}+\underbrace{3(2 t+1)^{3}}_{\text {odd }}=0,
$$

which is a contradiction, since the left side of the equation is an odd number and 0 is even.
Case 2: p is odd and q is even. Then $p=2 k+1$ and $q=2 t$, for some $k, t \in \mathbb{Z}$. This implies

$$
\underbrace{(2 k+1)^{3}}_{\text {odd }}+\underbrace{(2 k+1)(2 t)^{2}}_{\text {even }}+\underbrace{3(2 t)^{3}}_{\text {even }}=0
$$

which is a contradiction, since the left side of the equation is an odd number and 0 is even.
Case 3: p is odd and q is odd. Then $p=2 k+1$ and $q=2 t+1$, for some $k, t \in \mathbb{Z}$. This implies

$$
\underbrace{(2 k+1)^{3}}_{\text {odd }}+\underbrace{(2 k+1)(2 t+1)^{2}}_{\text {odd }}+\underbrace{3(2 t+1)^{3}}_{\text {odd }}=0
$$

which is a contradiction, since the left side of the equation is an odd number and 0 is even.
(d) Suppose $a \mid b$ and $a \mid\left(b^{2}-c\right)$. Then $b=a k$ and $b^{2}-c=t a$, for some $k, t \in \mathbb{Z}$. It follows that $(a k)^{2}-c=t a \Longrightarrow a^{2} k^{2}-c=t a \Longrightarrow a^{2} k^{2}-t a=c \Longrightarrow a\left(a k^{2}-a\right)=c$, which implies that $a \mid c$.
(e) By contradiction, suppose $a^{2}+b^{2}=c^{2}$, for some $c \in \mathbb{Z}$, and they are both odd. Then $a=2 k+1$ and $b=2 t+1$, for some $k, t \in \mathbb{Z}$. This implies

$$
\begin{aligned}
& (2 k+1)^{2}+(2 t+1)^{2}=c^{2} \Longrightarrow 4 k^{2}+4 k+1+4 t^{2}+4 t+1=c^{2} \\
& \Longrightarrow 4 k^{2}+4 t^{2}+4 k+4 t+2=c^{2} \Longrightarrow c^{2} \text { is even } \Longrightarrow c \text { is even. }
\end{aligned}
$$

Therefore, we can write $c=2 p$, for some $p \in \mathbb{Z}$. The above equation then becomes

$$
2\left(2 k^{2}+2 t^{2}+2 k+2 t+1\right)=4 p^{2} \Longrightarrow \underbrace{2 k^{2}+2 t^{2}+2 k+2 t+1}_{\text {odd }}=\underbrace{2 p^{2}}_{\text {even }},
$$

which is a contradiction.
(f) We use the Bézout's identity and obtain $1=a s+b t$, for some $s, t \in \mathbb{Z}$. We multiply this equation by c and obtain $c=a c s+b c t$. Since $a \mid b c$, it follows that $b c=h a$, for some $h \in \mathbb{Z}$. Therefore $c=a c s+h a t=a(c s+h t)$, which implies that $a \mid c$.
(g) Let $d=\operatorname{gcd}(n, n+1)$. Then $d|n \wedge d|(n+1)$. This implies $n=k d \wedge n+1=t d$, for some $k, t \in \mathbb{Z}$. Then $k d+1=t d$, which implies $(t-k) d=1$, i.e. $d \mid 1$. The only possibility is that $d=1$ (since $d \geq 0$).
(h) By contradiction, suppose $A \cap(B-A) \neq \varnothing$. Then there exists an element $x \in A \cap(B-$ A). This implies:

$$
x \in A \wedge x \in(B-A) \Longrightarrow x \in A \wedge(x \in B \wedge x \notin A) \Longrightarrow x \in A \wedge x \notin A
$$

which is a contradiction.
(i) By contradiction, suppose there exist integers a, b such that $a b$ is odd and $a^{2}+b^{2}$ is odd. Then we can write $a b=2 k+1$ and $a^{2}+b^{2}=2 t+1$, with $k, t \in \mathbb{Z}$. We have

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b=2 t+1+2(2 k+1)=2 t+4 k+3
$$

which implies that $(a+b)^{2}$ is odd, and therefore $a+b$ is odd. This is possible only if a and b have different parity. Without loss of generality, we assume a is even and b is odd. We write $a=2 p$ and $b=2 q+1$, with $p, q \in \mathbb{Z}$. This implies that $a b=2 p(2 q+1)$ is even, which is a contradiction.
(j) Suppose $a \equiv b \bmod 10$. Then $a-b=10 k$, for some $k \in \mathbb{Z}$. This implies $a-b=$ $5(2 k)=2(5 k)$, i.e. $a \equiv b \bmod 5$ and $a \equiv b \bmod 2$. Conversely, suppose $a \equiv b \bmod 2$ and $a \equiv b \bmod 5$. Then $a-b=2 k$ and $a-b=5 t$, with $k, t \in \mathbb{Z}$. This implies $2 k=5 t$, which is possible only if t is even. Thus, $t=2 h$, with $h \in \mathbb{Z}$, and therefore $a-b=$ $5(2 h)=10 h$, i.e. $a \equiv b \bmod 10$.
(k) By contradiction, suppose there exist $a, b \in \mathbb{Z}$ such that $4 \mid\left(a^{2}+b^{2}\right)$, and both are odd. Then $a=2 k+1$ and $b=2 t+1$, with $k, t \in \mathbb{Z}$. It follows that $a^{2}+b^{2}=(2 k+1)^{2}+$ $(2 t+1)^{2}=4 k^{2}+4 k+1+4 t^{2}+4 t+1=4\left(k^{2}+t^{2}+k+t\right)+2$, which is not a multiple of 4 , which is a contradiction.
(l) By contradiction, suppose $\log _{2} 3$ is rational, i.e. $\log _{2} 3=\frac{a}{b}$, with $a, b \in \mathbb{Z}, b \neq 0$, and $\operatorname{gcd}(a, b)=1$. This implies

$$
2^{a / b}=3 \Longrightarrow 2^{a}=3^{b}
$$

which is a contradiction, since the left side is an even number and the right side is odd.

