Exam 2 Review Problems

Exam 2 is Tuesday $4 / 4$ and will cover chapters 4 - 10 in Book of Proof. The following questions are meant to provide an additional opportunity to practice this material.

Prove the following statements. Use complete sentences.

1. Suppose a, b, c, d are positive integers. If $a \mid b$ and $c \mid d$ then $a c \mid b d$.
2. Suppose $a, b, c \in \mathbb{Z}$, and $n \in \mathbb{N}$. If $a \equiv b(\bmod n)$, and $a \equiv c(\bmod n)$, then $2 a \equiv b+c(\bmod n)$.
3. Suppose A and B are sets. Then $A-(A-B)=A \cap B$.
4. The number $\log _{2} 3$ is irrational.

Hint: Use proof by contradiction and the fact that $\log _{2} 3>0$.
5. The number $\sqrt{6}$ is irrational.
6. There exists a set X such that $X \cap \mathcal{P}(X)$ is not empty.

Hint: What element (s) is in $\mathcal{P}(X)$ no matter what X is?
7. Suppose n is an integer. If $3 \nmid n$, then $3 \mid\left(n^{2}-1\right)$.

Hint: Divide into cases.
8. For all integers $n \geq 1$,

$$
3+3^{2}+3^{3}+\ldots+3^{n}=\sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-3}{2}
$$

9. Suppose $x, y \in \mathbb{R}$. If

$$
x y-x^{2}+x^{3} \geq x^{2} y^{3}+4
$$

then $x \geq 0$ or $y \leq 0$.
Hint: Try proving the contrapositive statement.

