Exam 2 Review Problems

Exam 2 is Tuesday 4/4 and will cover chapters 4-10 in Book of Proof. The following questions are meant to provide an additional opportunity to practice this material.

Prove the following statements. Use complete sentences.

- 1. Suppose a, b, c, d are positive integers. If $a \mid b$ and $c \mid d$ then $ac \mid bd$.
- 2. Suppose $a, b, c \in \mathbb{Z}$, and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, and $a \equiv c \pmod{n}$, then $2a \equiv b + c \pmod{n}$.
- 3. Suppose A and B are sets. Then $A (A B) = A \cap B$.
- 4. The number log₂ 3 is irrational. Hint: Use proof by contradiction and the fact that log₂ 3 > 0.
- 5. The number $\sqrt{6}$ is irrational.
- 6. There exists a set X such that $X \cap \mathcal{P}(X)$ is not empty. Hint: What element(s) is in $\mathcal{P}(X)$ no matter what X is?
- 7. Suppose n is an integer. If $3 \nmid n$, then $3 \mid (n^2 1)$. Hint: Divide into cases.
- 8. For all integers $n \ge 1$,

$$3 + 3^2 + 3^3 + \ldots + 3^n = \sum_{i=1}^n 3^i = \frac{3^{n+1} - 3}{2}.$$

9. Suppose $x, y \in \mathbb{R}$. If

$$xy - x^2 + x^3 \ge x^2y^3 + 4,$$

then $x \ge 0$ or $y \le 0$. Hint: Try proving the contrapositive statement.