Exam 2 Review Problems

Exam 2 is Tuesday $4 / 4$ and will cover chapters 4 - 10 in Book of Proof. The following questions are meant to provide an additional opportunity to practice this material.

Prove the following statements. Use complete sentences.

1. Suppose a, b, c, d are positive integers. If $a \mid b$ and $c \mid d$ then $a c \mid b d$.

Solution: (Direct proof) Let us assume that $a \mid b$ and $c \mid d$. Then $b=a m$ and $d=c n$ for some $m, n \in \mathbb{Z}$. Now,

$$
b d=(a m)(c n)=(m n)(a c) .
$$

Since $m n \in \mathbb{Z}$, it follows that $a c \mid b d$.
2. Suppose $a, b, c \in \mathbb{Z}$, and $n \in \mathbb{N}$. If $a \equiv b(\bmod n)$, and $a \equiv c(\bmod n)$, then $2 a \equiv b+c(\bmod n)$.

Solution: (Direct proof) Let us assume that $a \equiv b(\bmod n)$, and $a \equiv c(\bmod n)$. By definition, $n \mid(a-b)$ and $n \mid(a-c)$. That is, $a-b=n x$ and $a-c=n y$ for some $x, y \in \mathbb{Z}$. Now,

$$
2 a-(b+c)=(a-b)+(a-c)=n x+n y=n(x+y)
$$

Since $x+y \in \mathbb{Z}$, this shows that $n \mid 2 a-(b+c)$. Therefore, by definition, $2 a \equiv b+c(\bmod n)$.
3. Suppose A and B are sets. Then $A-(A-B)=A \cap B$.

Solution: We prove the statement using only definitions and logical equivalences.

$$
\begin{aligned}
A-(A-B) & =\{x:(x \in A) \wedge \sim(x \in(A-B))\} \\
& =\{x:(x \in A) \wedge \sim((x \in A) \wedge \sim(x \in B))\} \\
& =\{x:(x \in A) \wedge(\sim(x \in A) \vee(x \in B))\} \\
& =\{x:((x \in A) \wedge \sim(x \in A)) \vee((x \in A) \wedge(x \in B))\} \\
& =\{x:(x \in A) \wedge \sim(x \in A)\} \cup\{x:(x \in A) \wedge(x \in B)\} \\
& =\emptyset \cup(A \cap B) \\
& =A \cap B
\end{aligned}
$$

4. The number $\log _{2} 3$ is irrational.

Hint: Use proof by contradiction and the fact that $\log _{2} 3>0$.

Solution: (Contradiction) Assume for the sake of contradiction that $\log _{2} 3$ is rational. Then $\log _{2} 3=$ a / b for some $a, b \in \mathbb{Z}$. Moreover, since $\log _{2} 3>0$, we may assume a and b are both positive integers. Since $\log _{2} 3=a / b$, it follows that $2^{a / b}=3$. Raising both sides of this equation to the power b, we see

$$
2^{a}=3^{b} .
$$

Since a and b are both positive integers, 2^{a} is the product of even integers and is even, while 3^{b} is the product of odd integers and is odd $\Rightarrow \Leftarrow$. This is a contrdiction - an even integer cannot equal an odd integer. Therefore our assumption that $\log _{2} 3$ is rational must be false. This proves that $\log _{2} 3$ is irrational.
5. The number $\sqrt{6}$ is irrational.

Solution: (Contradiction) Assume for the sake of contradiction that $\sqrt{6}$ is rational. Then $\sqrt{6}=a / b$ for some $a, b \in \mathbb{Z}$. Without loss of generality, assume that the fraction a / b is reduced and, in particular, that a and b are not both even.
Now since $\sqrt{6}=a / b$, it follows that $\sqrt{6} b=a$ and, squaring both sides, we have

$$
\begin{equation*}
a^{2}=6 b^{2}=2\left(3 b^{2}\right) \tag{1}
\end{equation*}
$$

Since $3 b^{2} \in \mathbb{Z}$, it follows that a^{2} is even and, since the product of two odd integers is odd, a must be even. Set $a=2 n$ for some $n \in \mathbb{Z}$. Now equation (1) says

$$
\begin{aligned}
(2 n)^{2} & =2\left(3 b^{2}\right), \\
2 n^{2} & =3 b^{2}
\end{aligned}
$$

Since $n^{2} \in \mathbb{Z}$, it follows that $3 b^{2}$ is even and, since 3 is odd this implies b must be even $\Rightarrow \Leftarrow$. This contradicts the fact that a and b are not both even. Thus our assumption that $\sqrt{6}$ is rational must be false. This proves that $\sqrt{6}$ is irrational.
6. There exists a set X such that $X \cap \mathcal{P}(X)$ is not empty.

Hint: What element(s) is in $\mathcal{P}(X)$ no matter what X is?

Solution: (Existence) Let X be any set that contains the empty set as an element, say $X=\{\emptyset\}$. Then $\mathcal{P}(X)=\{\emptyset,\{\emptyset\}\}$ and

$$
X \cap \mathcal{P}(X)=\{\emptyset\} \cap\{\emptyset,\{\emptyset\}\}=\{\emptyset\}
$$

is not empty. It contains thee empty set as an element.
7. Suppose n is an integer. If $3 \nmid n$, then $3 \mid\left(n^{2}-1\right)$.

Hint: Divide into cases.

Solution: (Direct proof by cases) Suppose $3 \nmid n$. Then $3 \nmid(n-0)$ and so, by definition, $n \not \equiv 0$ $(\bmod 3)$. Thus, either $n \equiv 1(\bmod n)$ or $n \equiv 2(\bmod n)$.
In the case that $n \equiv 1(\bmod 3)$, we have $n-1=3 k$ for some $k \in \mathbb{Z}$. Adding 2 to both sides gives $n+1=3 k+2$. Therefore

$$
n^{2}-1=(n+1)(n-1)=(3 k+2)(3 k)=3[k(3 k+2)] .
$$

Since $k(3 k+2)$ is an integer, this shows that $3 \mid n^{2}-1$.
In the case that $n \equiv 2(\bmod 3)$, we have $n-2=3 k$ for some $k \in \mathbb{Z}$. Adding 2 to both sides gives $n=3 k+2$. Therefore

$$
n^{2}-1=(3 k+2)^{2}-1=\left(9 k^{2}+12 k+4\right)-1=3\left(3 k^{2}+4 k+1\right) .
$$

Since $3 k^{2}+4 k+1$ is an integer, this shows that $3 \mid n^{2}-1$.
In either case, $3 \mid n^{2}-1$. This completes the proof.
8. For all integers $n \geq 1$,

$$
3+3^{2}+3^{3}+\ldots+3^{n}=\sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-3}{2}
$$

Solution: (Mathematical induction) We proceed by inducton. First, observe that the equation is true for $n=1$.

$$
3=\frac{3^{1+1}-3}{2}=\frac{9-3}{2}
$$

Now let's assume that

$$
\sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-3}{2}
$$

and use this to show that

$$
\sum_{i=1}^{n+1} 3^{i}=\frac{3^{(n+1)+1}-3}{2}
$$

We have

$$
\begin{aligned}
\sum_{i=1}^{n+1} 3^{i} & =\sum_{i=1}^{n} 3^{i}+3^{n+1} \\
& =\frac{3^{n+1}-3}{2}+3^{n+1} \\
& =\frac{3 \cdot 3^{n+1}-3}{2} \\
& =\frac{3^{(n+1)+1}-3}{2}
\end{aligned}
$$

Thus, by mathematical induction, the equation is true for all $n \in \mathbb{N}$.
9. Suppose $x, y \in \mathbb{R}$. If

$$
x y-x^{2}+x^{3} \geq x^{2} y^{3}+4
$$

then $x \geq 0$ or $y \leq 0$.
Hint: Try proving the contrapositive statement.

Solution: (Contrapositive) We will prove the contrapositive statement:

$$
\text { If } x<0 \text { and } y>0, \text { then } x y-x^{2}+x^{3}<x^{2} y^{3}+4
$$

Assume $x<0$ and $y>0$. Since the product of an odd number of negative real numbers is negative and the product of an even number of negative real numbers is positive, we have

$$
\begin{equation*}
x y<0, \quad-x^{2}<0, \quad x^{3}<0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0<x^{2} y^{3}, \quad 0<4 \tag{3}
\end{equation*}
$$

Now sum all of the inequalities in (2) and (3) to see

$$
x y-x^{2}+x^{3}<x^{2} y^{3}+4
$$

