Final Exam Review Problems

Our Final Exam is Thursday 5/11 1:30-3:30 pm and will cover chapters 1-12 in Book of Proof. The following questions are meant to provide an additional opportunity to practice this material efficiently. Solutions are posted to our class website.

- 1. Analyze the logical form of the following statements, then negate them. You may use the symbols $\in, \notin, =, \neq, \land, \lor, \Rightarrow, \Longrightarrow, \forall$ and \exists in your answers, but not $\subseteq, \notin, \mathcal{P}, \cap, \cup$ or \sim .
 - (a) $A \subseteq B C$.
 - (b) $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A B).$
- 2. Negate the following statements.
 - (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y > x \Longrightarrow \exists z \in \mathbb{R}, y = z^2 + 5z.$
 - (b) $\forall a \in A, \exists b \in B, a \in C \iff b \in C.$
- 3. Prove the following propositions:
 - (a) If $a, b, c \in \mathbb{Z}$, and if $a^2 \mid b$ and $b^3 \mid c$, then $a^6 \mid c$.
 - (b) If $n \in \mathbb{Z}$ is odd, then $8 \mid (n^2 1)$.
 - (c) Prove that for every integer n, $14 \mid n$ if and only if $2 \mid n$ and $7 \mid n$.
 - (d) Prove that it is not true that for every integer n, $60 \mid n$ if and only if $6 \mid n$ and $10 \mid n$.
- 4. Prove by induction that for every integer $n \ge 0, 4 \mid (3^{2n} 1)$.
- 5. Let R be the relation in \mathbb{Z} given by

$$x R y \Longleftrightarrow x = y \lor xy > 0.$$

- (a) Prove that R is an equivalence relation.
- (b) How many equivalence classes does the relation R on \mathbb{Z} have?
- 6. Let R be a relation on a set A which is reflexive and transitive. Let $S = R \cap R^{-1}$. Prove that S is an equivalence relation on A.
- 7. Find all the equivalence relations on the set $A = \{1, 2, 3\}$.
- 8. Let $f: A \to B$ be a function, and let $Y, Z \subseteq B$. Prove the following:
 - (a) $f(f^{-1}(Y)) \subseteq Y$.
 - (b) $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z).$
 - (c) $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$.
- 9. Show that the function $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ given by $\phi(x, y) = (x + y, x y)$ is bijective and find the inverse function ϕ^{-1} .
- 10. Let $f : \mathbb{Z} \longrightarrow \mathbb{Q}$ be the function

$$f(n) = \begin{cases} n^2 - 4 & n \ge 0\\ \frac{3}{5}n & n < 0 \end{cases}$$

- (a) Prove or disprove that f is injective and/or surjective.
- (b) Prove by induction that, for every $n \ge 1$

$$\sum_{i=1}^{n} f(i) = \frac{2n^3 + 3n^2 - 23n}{6}.$$

- 11. Let $A = \{1, 2, 3\}$ and $B = \{\alpha, \beta\}$. Write down all the possible functions $f : A \to B$. How many of those functions are injective? How many are surjective?
- 12. Let X and Y be two non-empty sets. Let $f: X \to Y$ be a function. We define in X the relation x R x' if and only if f(x) = f(x'). Prove that R is an equivalence relation.