Discrete Mathematics, Spring 2023

Practice problems final exam

Solutions

1. (a) $\forall x, x \in A \Longrightarrow(x \in B \wedge x \notin C)$.

Negation: $\exists x, x \in A \wedge(x \notin B \vee x \in C)$.
(b) We do it in several steps:

$$
\begin{gathered}
\forall X,(X \in \mathscr{P}(A)-\mathscr{P}(B)) \Longrightarrow X \in \mathscr{P}(A-B) \\
\forall X,(X \subseteq A \wedge X \nsubseteq B) \Longrightarrow X \subseteq A-B \\
\forall X,(\forall y \in X, y \in A \wedge \exists y \in X, y \notin B) \Longrightarrow \forall y \in X, y \in A \wedge y \notin B .
\end{gathered}
$$

Negation:

$$
\exists X,(\forall y \in X, y \in A \wedge \exists y \in X, y \notin B) \wedge(\exists y \in X, y \notin A \vee y \in B) .
$$

2. (a) $\sim R: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y>x \wedge \forall z \in \mathbb{R}, y \neq z^{2}+5 z$.
(b) $\sim R: \exists a \in A, \forall b \in B,(a \in C \wedge b \notin C) \vee(b \in C \wedge a \notin C)$.
3. (a) Suppose $a^{2}\left|b \wedge b^{3}\right| c$. Then $b=a^{2} k \wedge c=b^{3} t$, for some $k, t \in \mathbb{Z}$. It follows that $c=b^{3} t=\left(a^{2} k\right)^{3} t=a^{6}\left(k^{3} t\right) \Longrightarrow a^{6} \mid c$.
(b) Since n is odd, $n=2 k+1$, for some $k \in \mathbb{Z}$. Then $n^{2}-1=(2 k+1)^{2}=4 k^{2}+4 k+1-1=$ $4 k(k+1)$. We proceed by cases.
Case 1: k is even. Then $k=2 t$, with $t \in \mathbb{Z}$. Then $4 k(k+1)=8 t(2 t+1) \Longrightarrow 8 \mid n^{2}-1$. Case 2: k is odd. Then $k=2 h+1$, with $h \in \mathbb{Z}$. Then $4 k(k+1)=4(2 h+1)(2 h+1+$ 1) $=4(2 h+1)(2 h+2)=8(2 h+1)(h+1) \Longrightarrow 8 \mid n^{2}-1$.
(c) Suppose $14 \mid n$. Then $n=14 k$, with $k \in \mathbb{Z}$. Thus, $n=2(7 k)=7(2 k) \Longrightarrow 2|n \wedge 7| n$. Conversely, suppose $2|n \wedge 7| n$. Then $n=2 k \wedge n=7 t$, for some $k, t \in \mathbb{Z}$. It follows that $2 k=7 t$. Then $7 t$ is even, but since 7 is odd, this implies that t is even. So $t=2 s$, $s \in \mathbb{Z}$. Now we have $n=7(2 s)=14 s$. This shows that $14 \mid n$
(d) The implication $6|n \wedge 10| n \Longrightarrow 60 \mid n$ is not true. Counterexample: $n=30$: we have $6|30 \wedge 10| 30 \wedge 60 \nmid 30$.
4. We use induction.

Base step: $4 \mid 3^{0}-1=0$ is true.
Inductive step. Suppose $4 \mid 3^{2 k}-1$, for $k \geq 0$. We have $3^{(2(k+1)}-1=3^{2 k} \cdot 9-1$. Since $4 \mid 3^{2 k}-1$, we can write $3^{2 k}=4 t+1$, with $t \in \mathbb{Z}$. Then

$$
3^{2 k} \cdot 9-1=(4 t+1) 9-1=36 t+9-1=36 t+8=4(9 t+2) \Longrightarrow 4 \mid 3^{2(k+1)}-1 .
$$

5. (a) Reflexive: $\forall x \in \mathbb{Z}, x R x$ since $x=x$.

Symmetric: suppose $x, y \in \mathbb{Z}$ and $x R y$. Then $x=y \vee x y>0 \Longrightarrow y=x \vee y x>0 \Longrightarrow$ $y R x$.
Transitive: suppose $x, y, z \in \mathbb{Z}$ and $x R y \wedge y R z$. Then $x=y \vee x y>0$ and $y=z \vee y z>0$. We proceed by cases.
Case 1. If $x=y$ is true:
i. if $y=z$ is true, then $x=y=z \Longrightarrow x=z$.
ii. If $y z>0$ is true, then $x=y \wedge y z>0 \Longrightarrow x z>0$.
$\Longrightarrow x=z \vee x z>0 \Longrightarrow x R z$.
Case 2. If $x y>0$ is true:
i. if $y=z$ is true, then $y=z \wedge x y>0 \Longrightarrow x z>0$.
ii. If $y z>0$ is true, then $x y>0 \wedge y z>0 \Longrightarrow x y^{2} z>0 \Longrightarrow x z>0$.
$\Longrightarrow x z>0 \Longrightarrow x=z \vee x z>0$ is true $\Longrightarrow x R z$.
(b) The set of equivalence classes is $\{[x]: x \in \mathbb{Z}\}$. If $x \in \mathbb{Z}$, then $[x]=\{y \in \mathbb{Z}: x R y\}=$ $\{y \in \mathbb{Z}: x=y \vee x y>0\}$. In particular, we have $[0]=\{y \in \mathbb{Z}: 0=y \vee 0>0\}=\{0\}$, $[1]=\{y \in \mathbb{Z}: y=1 \vee y>0\}=\mathbb{N}$ and $[-1]=\{y \in \mathbb{Z}: y=-1 \vee y<0\}=\mathbb{Z}^{-}$, where \mathbb{Z}^{-1} denotes the set of negative integers. Every integer is in exactly one of these three equivalence classes. Therefore there are only three equivalence classes.
6. We have $R^{-1}=\{(y, x) \in A \times A:(x, y) \in R\}$ and $S=R \cap R^{-1}=\{(x, y) \in A \times A:(x, y) \in$ $\left.R \wedge(x, y) \in R^{-1}\right\}=\{(x, y) \in A \times A: x R y \wedge y R x\}$. We now prove that S is an equivalence relation.
Reflexive: since R is reflexive, we have $x R x \wedge x R x \Longrightarrow(x, x) \in S \Longrightarrow S$ is reflexive.
Symmetric: let $(x, y) \in S$. Then $(x, y) \in R \wedge(y, x) \in R \Longrightarrow x R y \wedge y R x \Longrightarrow y ; R ; x \wedge x R y \Longrightarrow$ $(y, x) \in S$, which implies that S is symmetric.
Transitive: suppose $(x, y) \in S \wedge(y, z) \in S$. Thus, $x R y \wedge y R x \wedge y R z \wedge z R y \Longrightarrow(x R y \wedge y R z) \wedge$ $(z R y \wedge y R x) \Longrightarrow$ (since R is transitive) $x R z \wedge z R x \Longrightarrow(x, z) \in S$, which implies that S is transitive.
7. We first of all write down the partitions of A :
(a) $\{\{1,2,3\}\}$.
(b) $\{\{1\},\{2,3\}\}$.
(c) $\{\{2\},\{1,3\}\}$.
(d) $\{\{3\},\{1,2\}\}$.
(e) $\{\{1\},\{2\},\{3\}\}$.

To each partition it corresponds an equivalence relation.
(a) $R=\{(1,1),(2,2),(3,3),(1,3),(3,1),(2,3),(3,2),(1,2),(2,1)\}$.
(b) $R=\{(1,1),(2,3),(3,2),(2,2),(3,3)\}$.
(c) $R=\{(2,2),(1,3),(3,1),(3,3),(1,1)\}$.
(d) $R=\{(3,3),(1,2),(2,1),(1,1),(2,2)\}$.
(e) $R=\{(1,1),(2,2),(3,3)\}$.
8. (a) We have $f^{-1}(Y)=\{x \in A: f(x) \in Y\}$ and $f\left(f^{-1}(Y)\right)=\left\{f(x): x \in f^{-1}(Y)\right\}$. Let $b \in f\left(f^{-1}(Y)\right)$. Then $b=f(a)$, for some $a \in f^{-1}(Y)$. This means $f(a) \in Y$, which implies $b \in Y \Longrightarrow f\left(f^{-1}(Y)\right) \subseteq Y$.
(b) We use double inclusion. Let $x \in f^{-1}(Y \cup Z)$. This means $f(x) \in Y \cup Z \Longrightarrow f(x) \in$ $Y \vee f(x) \in Z \Longrightarrow x \in f^{-1}(Y) \vee x \in f^{-1}(Z) \Longrightarrow x \in f^{-1}(Y) \cup f^{-1}(Z)$, which implies $f^{-1}(Y \cup Z) \subseteq f^{-1}(Y) \cup f^{-1}(Z)$. Conversely, suppose $x \in f^{-1}(Y) \cup f^{-1}(Z)$. This implies $x \in f^{-1}(Y) \vee x \in f^{-1}(Z) \Longrightarrow f(x) \in Y \vee f(x) \in Z \Longrightarrow f(x) \in Y \cup Z \Longrightarrow x \in$ $f^{-1}(Y \cup Z)$. Therefore, $f^{-1}(Y) \cup f^{-1}(Z) \subseteq f^{-1}(Y \cup Z)$.
(c) We use double inclusion. Let $x \in f^{-1}(Y \cap Z)$. Then $f(x) \in Y \cap Z \Longrightarrow f(x) \in Y \wedge f(x) \in$ $Z \Longrightarrow x \in f^{-1}(Y) \wedge x \in f^{-1}(Z) \Longrightarrow x \in f^{-1}(Y) \cap f^{-1}(Z)$, which implies $f^{-1}(Y \cap$ $Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$. Conversely, let $x \in f^{-1}(Y) \cap f^{-1}(Z)$. Then $x \in f^{-1}(Y) \wedge x \in$ $f^{-1}(Z) \Longrightarrow f(x) \in Y \wedge f(x) \in Z \Longrightarrow f(x) \in Y \cap Z \Longrightarrow x \in f^{-1}(Y \cap Z)$, which implies $f^{-1}(Y) \cap f^{-1}(Z) \subseteq f^{-1}(Y \cap Z)$.
9. Injective: suppose $\phi(x, y)=\phi\left(x^{\prime}, y^{\prime}\right)$. This implies $(x+y, x-y)=\left(x^{\prime}+y^{\prime}, x^{\prime}-y^{\prime}\right)$, i.e.

$$
\left\{\begin{array}{l}
x+y=x^{\prime}+y^{\prime} \\
x-y=x^{\prime}-y^{\prime}
\end{array} \Longrightarrow x=x^{\prime} \wedge y=y^{\prime} \Longrightarrow(x, y)=\left(x^{\prime}, y^{\prime}\right)\right. \text {. }
$$

Surjective: let $(a, b) \in \mathbb{R}^{2}$. We solve the equation $\phi(x, y)=(a, b)$. We have

$$
\left\{\begin{array} { l }
{ x + y = a } \\
{ x - y = b }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=\frac{a+b}{2} \\
y=\frac{a-b}{2}
\end{array}\right.\right.
$$

It follows that ϕ is surjective and its inverse is given by $\phi^{-1}(x, y)=\left(\frac{x+y}{2}, \frac{x-y}{2}\right)$.
10. (a) Injective: let $n, m \in \mathbb{Z}$, and suppose $f(n)=f(m)$. We proceed by cases.

Case 1: $n, m \geq 0$. Then $f(n)=f(m)$ implies $n^{2}-4=m^{2}-4 \Longrightarrow n^{2}=m^{2} \Longrightarrow n=m$ (since $n, m \geq 0$).
Case 2: $n, m<0$. Then $f(n)=f(m)$ implies $\frac{3 n}{5}=\frac{3 m}{5} \Longrightarrow n=m$.
Case 3: $n \geq 0, m<0$. Then $f(n)=f(m)$ implies $n^{2}-4=\frac{3 m}{5}$. If we set $n=1$ and $m=-5$, we have $f(1)=f(-5)$. Thus, f is not injective.
Surjective: let $a=\frac{1}{2}$. The equation $f(n)=\frac{1}{2}$ has no solutions. In fact, if $n \geq 0$, the equation $n^{2}-4=\frac{1}{2}$ has no solutions in \mathbb{Z}, and if $n<0$, the equation $\frac{3}{5} n=\frac{1}{2}$ also has no solutions in \mathbb{Z}.
(b) We want to prove by induction that $\sum_{i=1}^{n}\left(i^{2}-4\right)=\frac{2 n^{3}+3 n^{2}-23 n}{6}$, for every $n \in \mathbb{N}$.

Base step: set $n=1$. We have $-3=\frac{-18}{6}=-3$, which is true.
Inductive step: assume $\sum_{i=1}^{k}\left(i^{2}-4\right)=\frac{2 k^{3}+3 k^{2}-23 k}{6}$, for $k \geq 1$. We have

$$
\begin{aligned}
& \sum_{i=1}^{k+1}\left(i^{2}-4\right)=\sum_{i=1}^{k}\left(i^{2}-4\right)+(k+1)^{2}-4=\frac{2 k^{3}+3 k^{2}-23 k}{6}+k^{2}+2 k+1-4 \\
& =\ldots=\frac{2 k^{3}+9 k^{2}-11 k-18}{6}=(\text { check }) \frac{2(k+1)^{3}+3(k+1)^{2}-23(k+1)}{6} .
\end{aligned}
$$

11. We define a function $f: A \rightarrow B$ by writing explicitly $f(1), f(2), f(3)$:
(a) $f(1)=\alpha, f(2)=\alpha, f(3)=\alpha$.
(b) $f(1)=\alpha, f(2)=\alpha, f(3)=\beta$.
(c) $f(1)=\alpha, f(2)=\beta, f(3)=\alpha$.
(d) $f(1)=\alpha, f(2)=\beta, f(3)=\beta$.
(e) $f(1)=\beta, f(2)=\alpha, f(3)=\alpha$.
(f) $f(1)=\beta, f(2)=\alpha, f(3)=\beta$.
(g) $f(1)=\beta, f(2)=\beta, f(3)=\alpha$.
(h) $f(1)=\beta, f(2)=\beta, f(3)=\beta$.

None of the functions are injective. All apart from (a) and (g) are surjective.
12. Reflexive: $\forall x \in X, x R x$ since $f(x)=f(x)$.

Symmetric: $\forall x, y \in X, x R y \Longrightarrow f(x)=f(y) \Longrightarrow y R x$.
Transitive: $\forall x, y, z \in X, x R y \wedge y R z \Longrightarrow f(x)=f(y) \wedge f(y)=f(z) \Longrightarrow f(x)=f(y)=$ $f(z) \Longrightarrow f(x)=f(z) \Longrightarrow x R z$.

