Discrete Mathematics, Spring 2023

Practice problems final exam

Solutions

- 1. (a) $\forall x, x \in A \implies (x \in B \land x \notin C).$ Negation: $\exists x, x \in A \land (x \notin B \lor x \in C).$
 - (b) We do it in several steps:

$$\begin{aligned} \forall X, (X \in \mathscr{P}(A) - \mathscr{P}(B)) \Longrightarrow X \in \mathscr{P}(A - B) \\ \forall X, (X \subseteq A \land X \nsubseteq B) \Longrightarrow X \subseteq A - B \\ \forall X, (\forall y \in X, y \in A \land \exists y \in X, y \notin B) \Longrightarrow \forall y \in X, y \in A \land y \notin B \end{aligned}$$

Negation:

$$\exists X, (\forall y \in X, y \in A \land \exists y \in X, y \notin B) \land (\exists y \in X, y \notin A \lor y \in B).$$

- 2. (a) $\sim \mathbf{R} : \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y > x \land \forall z \in \mathbb{R}, y \neq z^2 + 5z.$
 - (b) $\sim R : \exists a \in A, \forall b \in B, (a \in C \land b \notin C) \lor (b \in C \land a \notin C).$
- 3. (a) Suppose $a^2 | b \wedge b^3 | c$. Then $b = a^2 k \wedge c = b^3 t$, for some $k, t \in \mathbb{Z}$. It follows that $c = b^3 t = (a^2 k)^3 t = a^6 (k^3 t) \Longrightarrow a^6 | c$.
 - (b) Since *n* is odd, n = 2k + 1, for some $k \in \mathbb{Z}$. Then $n^2 1 = (2k+1)^2 = 4k^2 + 4k + 1 1 = 4k(k+1)$. We proceed by cases. Case 1: *k* is even. Then k = 2t, with $t \in \mathbb{Z}$. Then $4k(k+1) = 8t(2t+1) \Longrightarrow 8 | n^2 - 1$. Case 2: *k* is odd. Then k = 2h + 1, with $h \in \mathbb{Z}$. Then $4k(k+1) = 4(2h+1)(2h+1+1) = 4(2h+1)(2h+2) = 8(2h+1)(h+1) \Longrightarrow 8 | n^2 - 1$.
 - (c) Suppose 14 | *n*. Then n = 14k, with $k \in \mathbb{Z}$. Thus, $n = 2(7k) = 7(2k) \Longrightarrow 2 | n \wedge 7 | n$. Conversely, suppose $2 | n \wedge 7 | n$. Then $n = 2k \wedge n = 7t$, for some $k, t \in \mathbb{Z}$. It follows that 2k = 7t. Then 7t is even, but since 7 is odd, this implies that t is even. So t = 2s, $s \in \mathbb{Z}$. Now we have n = 7(2s) = 14s. This shows that 14 | n
 - (d) The implication $6 | n \land 10 | n \Longrightarrow 60 | n$ is not true. Counterexample: n = 30: we have $6 | 30 \land 10 | 30 \land 60 \nmid 30$.
- 4. We use induction.

Base step: $4 | 3^0 - 1 = 0$ is true.

Inductive step. Suppose 4 | $3^{2k} - 1$, for $k \ge 0$. We have $3^{(2(k+1))} - 1 = 3^{2k} \cdot 9 - 1$. Since $4 | 3^{2k} - 1$, we can write $3^{2k} = 4t + 1$, with $t \in \mathbb{Z}$. Then

$$3^{2k} \cdot 9 - 1 = (4t+1)9 - 1 = 36t + 9 - 1 = 36t + 8 = 4(9t+2) \Longrightarrow 4 \mid 3^{2(k+1)} - 1$$

5. (a) Reflexive: $\forall x \in \mathbb{Z}, x R x \text{ since } x = x$.

Symmetric: suppose $x, y \in \mathbb{Z}$ and x R y. Then $x = y \lor xy > 0 \Longrightarrow y = x \lor yx > 0 \Longrightarrow y R x$.

Transitive: suppose $x, y, z \in \mathbb{Z}$ and $x R y \land y R z$. Then $x = y \lor xy > 0$ and $y = z \lor yz > 0$. We proceed by cases.

Case 1. If x = y is true:

- i. if y = z is true, then $x = y = z \Longrightarrow x = z$.
- ii. If yz > 0 is true, then $x = y \land yz > 0 \Longrightarrow xz > 0$.

 $\Longrightarrow x = z \lor xz > 0 \Longrightarrow x R z.$

Case 2. If xy > 0 is true:

- i. if y = z is true, then $y = z \land xy > 0 \Longrightarrow xz > 0$.
- ii. If yz > 0 is true, then $xy > 0 \land yz > 0 \Longrightarrow xy^2z > 0 \Longrightarrow xz > 0$.
- \implies $xz > 0 \implies x = z \lor xz > 0$ is true $\implies x R z$.
- (b) The set of equivalence classes is $\{[x] : x \in \mathbb{Z}\}$. If $x \in \mathbb{Z}$, then $[x] = \{y \in \mathbb{Z} : x R y\} = \{y \in \mathbb{Z} : x = y \lor xy > 0\}$. In particular, we have $[0] = \{y \in \mathbb{Z} : 0 = y \lor 0 > 0\} = \{0\}$, $[1] = \{y \in \mathbb{Z} : y = 1 \lor y > 0\} = \mathbb{N}$ and $[-1] = \{y \in \mathbb{Z} : y = -1 \lor y < 0\} = \mathbb{Z}^-$, where \mathbb{Z}^{-1} denotes the set of negative integers. Every integer is in exactly one of these three equivalence classes. Therefore there are only three equivalence classes.
- 6. We have $R^{-1} = \{(y,x) \in A \times A : (x,y) \in R\}$ and $S = R \cap R^{-1} = \{(x,y) \in A \times A : (x,y) \in R \land (x,y) \in R^{-1}\} = \{(x,y) \in A \times A : x R y \land y R x\}$. We now prove that *S* is an equivalence relation.

Reflexive: since *R* is reflexive, we have $x R x \wedge x R x \Longrightarrow (x, x) \in S \Longrightarrow S$ is reflexive.

Symmetric: let $(x, y) \in S$. Then $(x, y) \in R \land (y, x) \in R \implies x R y \land y R x \implies y; R; x \land x R y \implies (y, x) \in S$, which implies that *S* is symmetric.

Transitive: suppose $(x, y) \in S \land (y, z) \in S$. Thus, $x R y \land y R x \land y R z \land z R y \Longrightarrow (x R y \land y R z) \land (z R y \land y R x) \Longrightarrow$ (since *R* is transitive) $x R z \land z R x \Longrightarrow (x, z) \in S$, which implies that *S* is transitive.

- 7. We first of all write down the partitions of *A*:
 - (a) $\{\{1,2,3\}\}$.
 - (b) $\{\{1\},\{2,3\}\}$.
 - (c) $\{\{2\},\{1,3\}\}$.
 - (d) $\{\{3\},\{1,2\}\}$.
 - (e) $\{\{1\},\{2\},\{3\}\}\}.$

To each partition it corresponds an equivalence relation.

- (a) $R = \{(1,1), (2,2), (3,3), (1,3), (3,1), (2,3), (3,2), (1,2), (2,1)\}.$
- (b) $R = \{(1,1), (2,3), (3,2), (2,2), (3,3)\}.$
- (c) $R = \{(2,2), (1,3), (3,1), (3,3), (1,1)\}.$
- (d) $R = \{(3,3), (1,2), (2,1), (1,1), (2,2)\}.$
- (e) $R = \{(1,1), (2,2), (3,3)\}.$

- 8. (a) We have $f^{-1}(Y) = \{x \in A : f(x) \in Y\}$ and $f(f^{-1}(Y)) = \{f(x) : x \in f^{-1}(Y)\}$. Let $b \in f(f^{-1}(Y))$. Then b = f(a), for some $a \in f^{-1}(Y)$. This means $f(a) \in Y$, which implies $b \in Y \implies f(f^{-1}(Y)) \subseteq Y$.
 - (b) We use double inclusion. Let $x \in f^{-1}(Y \cup Z)$. This means $f(x) \in Y \cup Z \Longrightarrow f(x) \in Y \cup f(x) \in Z \Longrightarrow x \in f^{-1}(Y) \cup x \in f^{-1}(Z) \Longrightarrow x \in f^{-1}(Y) \cup f^{-1}(Z)$, which implies $f^{-1}(Y \cup Z) \subseteq f^{-1}(Y) \cup f^{-1}(Z)$. Conversely, suppose $x \in f^{-1}(Y) \cup f^{-1}(Z)$. This implies $x \in f^{-1}(Y) \vee x \in f^{-1}(Z) \Longrightarrow f(x) \in Y \vee f(x) \in Z \Longrightarrow f(x) \in Y \cup Z \Longrightarrow x \in f^{-1}(Y \cup Z)$. Therefore, $f^{-1}(Y) \cup f^{-1}(Z) \subseteq f^{-1}(Y \cup Z)$.
 - (c) We use double inclusion. Let $x \in f^{-1}(Y \cap Z)$. Then $f(x) \in Y \cap Z \Longrightarrow f(x) \in Y \wedge f(x) \in Z \Longrightarrow x \in f^{-1}(Y) \wedge x \in f^{-1}(Z) \Longrightarrow x \in f^{-1}(Y) \cap f^{-1}(Z)$, which implies $f^{-1}(Y \cap Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$. Conversely, let $x \in f^{-1}(Y) \cap f^{-1}(Z)$. Then $x \in f^{-1}(Y) \wedge x \in f^{-1}(Z) \Longrightarrow f(x) \in Y \wedge f(x) \in Z \Longrightarrow f(x) \in Y \cap Z \Longrightarrow x \in f^{-1}(Y \cap Z)$, which implies $f^{-1}(Y) \cap f^{-1}(Z) \subseteq f^{-1}(Y \cap Z)$.
- 9. Injective: suppose $\phi(x, y) = \phi(x', y')$. This implies (x + y, x y) = (x' + y', x' y'), i.e.

$$\begin{cases} x+y=x'+y'\\ x-y=x'-y' \implies x=x' \land y=y' \implies (x,y)=(x',y'). \end{cases}$$

Surjective: let $(a,b) \in \mathbb{R}^2$. We solve the equation $\phi(x,y) = (a,b)$. We have

$$\begin{cases} x+y=a\\ x-y=b \end{cases} \Longrightarrow \begin{cases} x=\frac{a+b}{2}\\ y=\frac{a-b}{2} \end{cases}$$

It follows that ϕ is surjective and its inverse is given by $\phi^{-1}(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$.

10. (a) Injective: let $n, m \in \mathbb{Z}$, and suppose f(n) = f(m). We proceed by cases. Case 1: $n, m \ge 0$. Then f(n) = f(m) implies $n^2 - 4 = m^2 - 4 \implies n^2 = m^2 \implies n = m$ (since $n, m \ge 0$). Case 2: n, m < 0. Then f(n) = f(m) implies $\frac{3n}{5} = \frac{3m}{5} \implies n = m$. Case 3: $n \ge 0, m < 0$. Then f(n) = f(m) implies $n^2 - 4 = \frac{3m}{5}$. If we set n = 1 and m = -5, we have f(1) = f(-5). Thus, f is not injective. Surjective: let $a = \frac{1}{2}$. The equation $f(n) = \frac{1}{2}$ has no solutions. In fact, if $n \ge 0$, the equation $n^2 - 4 = \frac{1}{2}$ has no solutions in \mathbb{Z} , and if n < 0, the equation $\frac{3}{5}n = \frac{1}{2}$ also has no solutions in \mathbb{Z} . (b) We want to prove by induction that $\sum_{i=1}^{n} (i^2 - 4) = \frac{2n^3 + 3n^2 - 23n}{6}$, for every $n \in \mathbb{N}$. Base step: set n = 1. We have $-3 = \frac{-18}{6} = -3$, which is true. Inductive step: assume $\sum_{i=1}^{k} (i^2 - 4) = \frac{2k^3 + 3k^2 - 23k}{6}$, for $k \ge 1$. We have $\sum_{i=1}^{k+1} (i^2 - 4) = \sum_{i=1}^{k} (i^2 - 4) + (k+1)^2 - 4 = \frac{2k^3 + 3k^2 - 23k}{6} + k^2 + 2k + 1 - 4$ $= \dots = \frac{2k^3 + 9k^2 - 11k - 18}{6} = (\text{check}) \frac{2(k+1)^3 + 3(k+1)^2 - 23(k+1)}{6}$.

- 11. We define a function $f : A \to B$ by writing explicitly f(1), f(2), f(3):
 - (a) $f(1) = \alpha, f(2) = \alpha, f(3) = \alpha$. (b) $f(1) = \alpha, f(2) = \alpha, f(3) = \beta$. (c) $f(1) = \alpha, f(2) = \beta, f(3) = \alpha$. (d) $f(1) = \alpha, f(2) = \beta, f(3) = \beta$. (e) $f(1) = \beta, f(2) = \alpha, f(3) = \alpha$. (f) $f(1) = \beta, f(2) = \alpha, f(3) = \beta$. (g) $f(1) = \beta, f(2) = \beta, f(3) = \alpha$. (h) $f(1) = \beta, f(2) = \beta, f(3) = \beta$.

None of the functions are injective. All apart from (a) and (g) are surjective.

12. Reflexive: $\forall x \in X, x R x \text{ since } f(x) = f(x)$. Symmetric: $\forall x, y \in X, x R y \Longrightarrow f(x) = f(y) \Longrightarrow y R x$. Transitive: $\forall x, y, z \in X, x R y \land y R z \Longrightarrow f(x) = f(y) \land f(y) = f(z) \Longrightarrow f(x) = f(y) = f(z) \Longrightarrow f(x) = f(z) \Longrightarrow x R z$.