HOMEWORK 5: CH.4 # 2,6,8,12,14

Доны Абдиск 1 2/24/2023

2. If *x* is an odd integer, then x^3 is odd.

BY DEFINITION, X = 2a + 1 For some $a \in \mathbb{Z}$. THEN $X^{3} = (2a + 1)^{3} = 8a^{3} + 12a^{2} + 6a + 1 = 2(4a^{3} + 6a^{2} + 3a) + 1$ Set $C = 4a^{3} + 6a^{2} + 3a \in \mathbb{Z}$ THEN $X^{3} = 2c + 1$. THEREFORE, X^{3} is obto.

6. Suppose $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.

Proof. Assume alb and alc.
BY DEFINITION,
$$b = ax$$
 and $c = ay$ for some $x, y \in \mathbb{Z}$.
Then $b+c = ax + ay = a(x+y)$.
Set $d = x+y \in \mathbb{Z}$.
Then $b+c = ad$.
Therefore $a|(b+c)$.

8. Suppose *a* is an integer. If $5 \mid 2a$, then $5 \mid a$.

THAT is, X = 2n, $n \in \mathbb{Z}$. THUS 2a = 5x = 5(2n) = 2(5n). DIVIDING BOTH SIDES OF 2a = 2(5n) BY 2 YIELDS a = 5n. THEREFORE, 5a.

12. If $x \in \mathbb{R}$ and 0 < x < 4, then $\frac{4}{x(4-x)} \ge 1$.

<u>PROOF:</u> Assue OcxC4.

We have $(x-2)^2 \ge 0$. That is, $x^2 - 4x + 4 \ge 0$, i.e. $4 \ge 4x - x^2$.

FACTURE GIVES 4=x(4-x).

Since x > 0 and 4 - x > 0 by assumption, dividing both sides by x(4 - x) > 0Yields $\frac{4}{x(4 - x)} \ge 1$

14. If $n \in \mathbb{Z}$, then $5n^2 + 3n + 7$ is odd. (Try cases.)

<u>Proof:</u> We cousider 2 cases based on the Parity of n.

CASE 1. ASSUME NEZ IS ODD. BY DEFINITION, n = 2a + 1 For SWE $a \in \mathbb{Z}$. THEN $5n^{2} + 3n + 7 = 5(2a + 1)^{2} + 3(2a + 1) + 7$ $= 20a^{2} + 8a + 15$ $= 2(10a^{2} + 4a + 7) + 1$. SET $C = 10a^{2} + 4a + 7 \in \mathbb{Z}$. THEN $5n^{2} + 3n + 7 = 2C + 1$. THEN $5n^{2} + 3n + 7 = 2C + 1$. THEREFOLE, $5n^{2} + 3n + 7$ IS ODD. CASE 2. Assume $n \in \mathbb{Z}$ is even. BY DEFINITION, n = 2a For some $a \in \mathbb{Z}$. THEN $5n^{2} + 3n + 7 = 5(2a)^{2} + 3(2a) + 7$ $= 20a^{2} + 6a + 7$ $= 2(10a^{2} + 3a + 3) + 1$.

Set
$$c = 10a^2 + 3a + 3 \in \mathbb{Z}$$
.
THEN $5n^2 + 3n + 7 = 2c + 1$.
THENEFORE, $5n^2 + 3n + 7$ is odd.
Case 1 $\frac{5}{4}$ Case 2 show THAT FOR ALL NEZ, $5n^2 + 3n + 7$ is odd.