## HOMEWORK 7 SOLUTIONS - DISCRETE MATH SPRING 2023

JOHN ADAMSKI

7.4 Theorem. Given an integer $a$, then $a^{2}+4 a+5$ is odd if and only if $a$ is even.

Proof. We prove this biconditional statement in two steps. First, we show directly that if $a$ is even then $a^{2}+4 a+5$ is odd. So let us assume that $a$ is even and set $a=2 n$ for some integer $n$. Then

$$
\begin{aligned}
a^{2}+4 a+5 & =(2 n)^{2}+4(2 n)+5 \\
& =2\left(2 n^{2}+4 n+2\right)+1
\end{aligned}
$$

Since $2 n^{2}+4 n+2$ is an integer, this shows that $a^{2}+4 a+5$ is odd.
Next, we show that if $a^{2}+4 a+5$ is odd then $a$ is even. To do this we will prove the contrapositive statement: if $a$ is odd then $a^{2}+4 a+5$ is even. So let us assume that $a$ is odd and set $a=2 n+1$ for some integer $n$. Then

$$
\begin{aligned}
a^{2}+4 a+5 & =(2 n+1)^{2}+4(2 n+1)+5 \\
& =2\left(2 n^{2}+6 n+5\right)
\end{aligned}
$$

Since $2 n^{2}+6 n+5$ is an integer, this shows that $a^{2}+4 a+5$ is even. This completes the proof.
7.8 Theorem. Suppose $a, b \in \mathbb{Z}$. Prove that $a \equiv b(\bmod 10)$ if and only if $a \equiv b$ $(\bmod 2)$ and $a \equiv b(\bmod 5)$.
Proof. First, let us assume that $a \equiv b(\bmod 10)$ and show directly that $a \equiv b$ $(\bmod 2)$ and $a \equiv b(\bmod 5)$. By definition, $a-b=10 n$ for some integer $n$, and so

$$
\begin{equation*}
a-b=2(5 n)=5(2 n) \tag{1}
\end{equation*}
$$

Since both $5 n$ and $2 n$ are integers, it follows that $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 5)$.
Now let us prove the converse by assuming $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 5)$ then showing that $a \equiv b(\bmod 10)$. By definition, we have $a-b=2 x$ and $a-b=5 y$ for some integers $x$ and $y$. Thus $2 x=5 y$ and, in particular, $5 y$ is even. Since 5 is odd, it follows that $y$ must be even. That is, $y=2 m$ for some integer $m$. Therefore

$$
a-b=5(2 m)=10 m
$$

and so $a \equiv b(\bmod 1-)$.
7.16 Theorem. Suppose $a, b \in \mathbb{Z}$. If $a b$ is odd, then $a^{2}+b^{2}$ is even.

Proof. In order to prove the statement directly, let us assume that $a b$ is odd. It follows that both $a$ and $b$ are odd, for otherwise $a b$ would be even. Set $a=2 n+1$ and $b=2 m+1$ for some integers $m$ and $n$. Then

$$
\begin{aligned}
a^{2}+b^{2} & =(2 n+1)^{2}+(2 m+1)^{2} \\
& =2\left(2 n^{2}+2 m^{2}+2 n+2 m+1\right) .
\end{aligned}
$$

Since $2 n^{2}+2 m^{2}+2 n+2 m+1$ is an integer, this shows that $a^{2}+b^{2}$ is even.
7.22 Theorem. If $n \in \mathbb{Z}$, then $4 \mid n^{2}$ or $4 \mid\left(n^{2}-1\right)$.

Proof. We break this into cases based on the parity of $n$. If $n$ is even then set $n=2 x$ for some integer $x$. Then

$$
n^{2}=(2 x)^{2}=4 x^{2}
$$

Since $x^{2}$ is an integer, this shows that $4 \mid n^{2}$.
Now let us consider the case that $n$ is odd. Set $n=2 y+1$ for some integer $y$. Then

$$
\begin{aligned}
n^{2}-1 & =(2 y+1)^{2}-1 \\
& =4\left(y^{2}+y\right) .
\end{aligned}
$$

Since $y^{2}+y$ is an integer, this shows that $4 \mid\left(n^{2}-1\right)$. In summary, for any integer $n$, it is true that $4 \mid n^{2}$ or $4 \mid\left(n^{2}-1\right)$.
8.4 Theorem. If $m, n \in \mathbb{Z}$, then $\{x \in \mathbb{Z}: m n \mid x\} \subseteq\{x \in \mathbb{Z}: m \mid x\} \cap\{x \in \mathbb{Z}: n \mid x\}$.

Proof. Suppose $a \in\{x \in \mathbb{Z}: m n \mid x\}$. Then $a$ is an integer and $m n \mid a$. Set $a=(m n) b$ for some integer $b$. Then

$$
a=m(n b)=n(m b)
$$

Since both $n b$ and $m b$ are integers, this shows that $m \mid a$ and $n \mid a$. Thus

$$
a \in\{x \in \mathbb{Z}: m \mid x\} \cap\{x \in \mathbb{Z}: n \mid x\}
$$

This completes the proof.
8.6 Theorem. Suppose $A, B$ and $C$ are sets. Prove that if $A \subseteq B$, then $A-C \subseteq B-C$.

Proof. To prove this directly, let us assume that $A \subseteq B$ and $x \in A-C$. We must show that $x \in B-C$. Since $x \in A-C$, by definition $x \in A$ and $x \notin C$. Since $A \subseteq B$, it follows that $x \in B$. Therefore, $x \in B$ and $x \notin C$. That is, by definition, $x \in B-C$.
lemma Lemma 1. (Distributive Rule) Let $P, Q$ and $R$ be statements. Then

$$
P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)
$$

Proof. The following truth table proves the logical equivalence.

| $P$ | $Q$ | $R$ | $Q \wedge R$ | $P \vee Q$ | $P \vee R$ | $P \vee(Q \wedge R)$ | $(P \vee Q) \wedge(P \vee R)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T | T | T |
| T | T | F | F | T | T | T | T |
| T | F | T | F | T | T | T | T |
| T | F | F | F | T | T | T | T |
| F | T | T | T | T | T | T | T |
| F | T | F | F | T | F | F | F |
| F | F | T | F | F | T | F | F |
| F | F | F | F | F | F | F | F |

8.8 Theorem. If $A, B$ and $C$ are sets, then $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Proof. We prove this directly using only definitions and logically equivalent statements. Note that the logical equivalence of lines 2 and 3 follows immediately from the previous lemma. ${ }^{1}$

$$
\begin{aligned}
A \cup(B \cap C) & =\{x:(x \in A) \vee(x \in B \cap C)\} \\
& =\{x:(x \in A) \vee((x \in B) \wedge(x \in C))\} \\
& =\{x:((x \in A) \vee(x \in B)) \wedge((x \in A) \vee(x \in C))\} \\
& =\{x:(x \in A) \vee(x \in B)\} \cap\{x:(x \in A) \vee(x \in C)\} \\
& =(A \cup B) \cap(A \cup C)
\end{aligned}
$$

8.20 Theorem 1. Prove that $\left\{9^{n}: n \in \mathbb{Q}\right\}=\left\{3^{n}: n \in \mathbb{Q}\right\}$.

Proof. Set $A=\left\{9^{n}: n \in \mathbb{Q}\right\}$ and let $B=\left\{3^{n}: n \in \mathbb{Q}\right\}$. We prove the statement in two steps by showing $A \subseteq B$ and $B \subseteq A$. First we show that $A \subseteq B$. Let us assume that $x \in A$. Then there is a rational number $n$ such that

$$
x=9^{n}=\left(3^{2}\right)^{n}=3^{2 n} .
$$

Since $2 n \in \mathbb{Q}$, it follows that $x \in B$.
Now assume that $x \in B$. Then there is a rational number $m$ such that

$$
x=3^{m}=\left(9^{1 / 2}\right)^{m}=9^{m / 2}
$$

Since $m / 2 \in \mathbb{Q}$, it follows that $x \in A$. This completes the proof.
8.28 Theorem. Prove that $\{12 a+25 b: a, b \in \mathbb{Z}\}=\mathbb{Z}$.

[^0]Proof. We prove the statement in two steps. First, Since 12 and 25 are integers, it is clear that whenever $a$ and $b$ are integers then so is $12 a+25 b$. This shows that $\{12 a+25 b: a, b \in \mathbb{Z}\} \subseteq \mathbb{Z}$.

Next, let $n \in \mathbb{Z}$. Observe that

$$
1=12(-2)+25(1)
$$

and so

$$
n=n \cdot 1=n(12(-2)+25(1))=12(-2 n)+25(n)
$$

Since both $n$ and $-2 n$ are integers, it follows that $n \in\{12 a+25 b: a, b \in \mathbb{Z}\}$. Therefore $\mathbb{Z} \subset\{12 a+25 b: a, b \in \mathbb{Z}\}$. This completes the proof.

Department of Mathematics, Fordham University
Email address: adamski@fordham.edu
URL: www.johnadamski.com


[^0]:    ${ }^{1}$ You are free to use without proof the distributive rule and all logical equivalences listed on page 52 of Book of Proof, by Richard Hammock.

