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7.4 Theorem. Given an integer a, then a2 + 4a + 5 is odd if and only if a is even.

Proof. We prove this biconditional statement in two steps. First, we show directly
that if a is even then a2 + 4a + 5 is odd. So let us assume that a is even and set
a = 2n for some integer n. Then

a2 + 4a + 5 = (2n)2 + 4(2n) + 5

= 2(2n2 + 4n + 2) + 1.

Since 2n2 + 4n + 2 is an integer, this shows that a2 + 4a + 5 is odd.
Next, we show that if a2 + 4a + 5 is odd then a is even. To do this we will prove

the contrapositive statement: if a is odd then a2 + 4a + 5 is even. So let us assume
that a is odd and set a = 2n + 1 for some integer n. Then

a2 + 4a + 5 = (2n + 1)2 + 4(2n + 1) + 5

= 2(2n2 + 6n + 5).

Since 2n2 + 6n + 5 is an integer, this shows that a2 + 4a + 5 is even. This completes
the proof. �

7.8 Theorem. Suppose a, b ∈ Z. Prove that a ≡ b (mod 10) if and only if a ≡ b
(mod 2) and a ≡ b (mod 5).

Proof. First, let us assume that a ≡ b (mod 10) and show directly that a ≡ b
(mod 2) and a ≡ b (mod 5). By definition, a− b = 10n for some integer n, and so

(1) a− b = 2(5n) = 5(2n).

Since both 5n and 2n are integers, it follows that a ≡ b (mod 2) and a ≡ b (mod 5).
Now let us prove the converse by assuming a ≡ b (mod 2) and a ≡ b (mod 5)

then showing that a ≡ b (mod 10). By definition, we have a− b = 2x and a− b = 5y
for some integers x and y. Thus 2x = 5y and, in particular, 5y is even. Since 5 is
odd, it follows that y must be even. That is, y = 2m for some integer m. Therefore

a− b = 5(2m) = 10m,

and so a ≡ b (mod 1−). �

7.16 Theorem. Suppose a, b ∈ Z. If ab is odd, then a2 + b2 is even.
1
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Proof. In order to prove the statement directly, let us assume that ab is odd. It
follows that both a and b are odd, for otherwise ab would be even. Set a = 2n + 1
and b = 2m + 1 for some integers m and n. Then

a2 + b2 = (2n + 1)2 + (2m + 1)2

= 2(2n2 + 2m2 + 2n + 2m + 1).

Since 2n2 + 2m2 + 2n + 2m + 1 is an integer, this shows that a2 + b2 is even. �

7.22 Theorem. If n ∈ Z, then 4 | n2 or 4 | (n2 − 1).

Proof. We break this into cases based on the parity of n. If n is even then set n = 2x
for some integer x. Then

n2 = (2x)2 = 4x2.

Since x2 is an integer, this shows that 4 | n2.
Now let us consider the case that n is odd. Set n = 2y + 1 for some integer y.

Then

n2 − 1 = (2y + 1)2 − 1

= 4(y2 + y).

Since y2 + y is an integer, this shows that 4 | (n2 − 1). In summary, for any integer
n, it is true that 4 | n2 or 4 | (n2 − 1). �

8.4 Theorem. If m,n ∈ Z, then {x ∈ Z : mn | x} ⊆ {x ∈ Z : m | x} ∩ {x ∈ Z : n | x}.

Proof. Suppose a ∈ {x ∈ Z : mn | x}. Then a is an integer and mn | a. Set
a = (mn)b for some integer b. Then

a = m(nb) = n(mb).

Since both nb and mb are integers, this shows that m | a and n | a. Thus

a ∈ {x ∈ Z : m | x} ∩ {x ∈ Z : n | x}.
This completes the proof. �

8.6 Theorem. Suppose A,B and C are sets. Prove that if A ⊆ B, then A−C ⊆ B−C.

Proof. To prove this directly, let us assume that A ⊆ B and x ∈ A − C. We must
show that x ∈ B − C. Since x ∈ A − C, by definition x ∈ A and x /∈ C. Since
A ⊆ B, it follows that x ∈ B. Therefore, x ∈ B and x /∈ C. That is, by definition,
x ∈ B − C. �

Lemma 1. (Distributive Rule) Let P,Q and R be statements. Thenlemma

P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R).

Proof. The following truth table proves the logical equivalence.
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P Q R Q ∧R P ∨Q P ∨R P ∨ (Q ∧R) (P ∨Q) ∧ (P ∨R)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F T F F F
F F T F F T F F
F F F F F F F F

�

8.8 Theorem. If A,B and C are sets, then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. We prove this directly using only definitions and logically equivalent state-
ments. Note that the logical equivalence of lines 2 and 3 follows immediately from
the previous lemma.1

A ∪ (B ∩ C) = {x : (x ∈ A) ∨ (x ∈ B ∩ C)}
= {x : (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C))}
= {x : ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x ∈ C))}
= {x : (x ∈ A) ∨ (x ∈ B)} ∩ {x : (x ∈ A) ∨ (x ∈ C)}
= (A ∪B) ∩ (A ∪ C)

�

8.20 Theorem 1. Prove that {9n : n ∈ Q} = {3n : n ∈ Q}.

Proof. Set A = {9n : n ∈ Q} and let B = {3n : n ∈ Q}. We prove the statement in
two steps by showing A ⊆ B and B ⊆ A. First we show that A ⊆ B. Let us assume
that x ∈ A. Then there is a rational number n such that

x = 9n = (32)n = 32n.

Since 2n ∈ Q, it follows that x ∈ B.
Now assume that x ∈ B. Then there is a rational number m such that

x = 3m =
(
91/2

)m
= 9m/2.

Since m/2 ∈ Q, it follows that x ∈ A. This completes the proof. �

8.28 Theorem. Prove that {12a + 25b : a, b ∈ Z} = Z.
1You are free to use without proof the distributive rule and all logical equivalences listed on page

52 of Book of Proof, by Richard Hammock.

https://www.people.vcu.edu/~rhammack/BookOfProof/
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Proof. We prove the statement in two steps. First, Since 12 and 25 are integers, it
is clear that whenever a and b are integers then so is 12a + 25b. This shows that
{12a + 25b : a, b ∈ Z} ⊆ Z.

Next, let n ∈ Z. Observe that

1 = 12(−2) + 25(1),

and so
n = n · 1 = n (12(−2) + 25(1)) = 12(−2n) + 25(n).

Since both n and −2n are integers, it follows that n ∈ {12a + 25b : a, b ∈ Z}.
Therefore Z ⊂ {12a + 25b : a, b ∈ Z}. This completes the proof. �
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