\documentclass[12pt,oneside]{amsart} \usepackage{geometry} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} %\usepackage{pdfpages} \usepackage{enumerate} \usepackage[all]{xy} \usepackage{graphicx} \graphicspath{ {./images/} } \usepackage{appendix} %\usepackage{caption} \usepackage{subcaption} \usepackage{color} \usepackage{verbatim} \usepackage{mathtools} \usepackage{tikz-cd} \usepackage[section]{placeins} \usepackage{showkeys} \usepackage{hyperref} \usepackage{enumitem} \usepackage{multicol} \hypersetup{ colorlinks=true, allcolors=blue, } %ENVIRONMENTS \newtheorem{theorem}{Theorem} \newtheorem*{theorem*}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem{lemma}{Lemma} \newtheorem{remark}{Remark} \newtheorem{conjecture}{Conjecture} \newtheorem{example}{Example} \newtheorem{proposition}{Proposition} \theoremstyle{definition} \newtheorem{definition}{Definition} \newtheorem{note}{Note} %OPERATORS \DeclareMathOperator{\dist}{dist} %SYMBOLS \def\a{\alpha} \def\b{\beta} \def\m{\mu} \def\n{\nu} \def\u{\upsilon} \def\l{\lambda} \def\CC{\mathbb{C}} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\Z{\mathbb{Z}} \def\N{\mathbb{N}} \def\T{\mathbb{T}} \def\H{\mathbb{H}} \def\S{\Sigma} \def\s{\sigma} \def\e{\epsilon} \def\B{\mathcal{B}} \def\O{\Omega} \def\o{\omega} \def\C{\mathcal{C}} \def\U{\mathcal{U}} \def\A{\mathcal{A}} \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Homework 7 Solutions - Discrete Math spring 2023} \author{John Adamski} \address{Department of Mathematics, Fordham University} \email{adamski@fordham.edu} \urladdr{www.johnadamski.com} %\begin{abstract} %Great stuff! %\end{abstract} %\tableofcontents \maketitle %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{theorem*}\label{7.4} Given an integer $a$, then $a^2 + 4a + 5$ is odd if and only if $a$ is even. \end{theorem*} \begin{proof} We prove this biconditional statement in two steps. First, we show directly that if $a$ is even then $a^2 + 4a + 5$ is odd. So let us assume that $a$ is even and set $a = 2n$ for some integer $n$. Then \begin{align*} a^2 + 4a + 5 &= (2n)^2 + 4(2n) + 5 \\ &= 2(2n^2 + 4n + 2) + 1. \end{align*} Since $2n^2 + 4n + 2$ is an integer, this shows that $a^2 + 4a + 5$ is odd. Next, we show that if $a^2 + 4a + 5$ is odd then $a$ is even. To do this we will prove the contrapositive statement: if $a$ is odd then $a^2 + 4a + 5$ is even. So let us assume that $a$ is odd and set $a = 2n + 1$ for some integer $n$. Then \begin{align*} a^2 + 4a + 5 &= (2n + 1)^2 + 4(2n + 1) + 5 \\ &= 2(2n^2 + 6n + 5). \end{align*} Since $2n^2 + 6n + 5$ is an integer, this shows that $a^2 + 4a + 5$ is even. This completes the proof. \end{proof} \begin{theorem*}\label{7.8} Suppose $a,b \in \Z$. Prove that $a \equiv b \pmod{10}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$. \end{theorem*} \begin{proof} First, let us assume that $a \equiv b \pmod{10}$ and show directly that $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$. By definition, $a - b = 10n$ for some integer $n$, and so \begin{equation} a - b = 2(5n) = 5(2n). \end{equation} Since both $5n$ and $2n$ are integers, it follows that $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$. Now let us prove the converse by assuming $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$ then showing that $a \equiv b \pmod{10}$. By definition, we have $a - b = 2x$ and $a - b = 5y$ for some integers $x$ and $y$. Thus $2x = 5y$ and, in particular, $5y$ is even. Since $5$ is odd, it follows that $y$ must be even. That is, $y = 2m$ for some integer $m$. Therefore \begin{equation*} a - b = 5(2m) = 10m, \end{equation*} and so $a \equiv b \pmod{1-}$. \end{proof} \begin{theorem*}\label{7.16} Suppose $a, b \in \Z$. If $ab$ is odd, then $a^2 + b^2$ is even. \end{theorem*} \begin{proof} In order to prove the statement directly, let us assume that $ab$ is odd. It follows that both $a$ and $b$ are odd, for otherwise $ab$ would be even. Set $a = 2n + 1$ and $b = 2m + 1$ for some integers $m$ and $n$. Then \begin{align*} a^2 + b^2 &= (2n + 1)^2 + (2m + 1)^2 \\ &= 2(2n^2 + 2m^2 + 2n + 2m + 1). \end{align*} Since $2n^2 + 2m^2 + 2n + 2m + 1$ is an integer, this shows that $a^2 + b^2$ is even. \end{proof} \begin{theorem*}\label{7.22} If $n \in \Z$, then $4 \mid n^2$ or $4 \mid (n^2 - 1)$. \end{theorem*} \begin{proof} We break this into cases based on the parity of $n$. If $n$ is even then set $n = 2x$ for some integer $x$. Then \begin{equation*} n^2 = (2x)^2 = 4x^2. \end{equation*} Since $x^2$ is an integer, this shows that $4 \mid n^2$. Now let us consider the case that $n$ is odd. Set $n = 2y + 1$ for some integer $y$. Then \begin{align*} n^2 - 1&= (2y + 1)^2 - 1\\ &= 4(y^2 + y). \end{align*} Since $y^2 + y$ is an integer, this shows that $4 \mid (n^2 - 1)$. In summary, for any integer $n$, it is true that $4 \mid n^2$ or $4 \mid (n^2 - 1)$. \end{proof} \begin{theorem*}\label{8.4} If $m,n \in \Z$, then $\{x \in \Z : mn \mid x\} \subseteq \{x \in \Z : m \mid x\} \cap \{ x \in \Z : n \mid x\}.$ \end{theorem*} \begin{proof} Suppose $a \in \{x \in \Z : mn \mid x\}$. Then $a$ is an integer and $mn \mid a$. Set $a = (mn)b$ for some integer $b$. Then \begin{equation*} a = m(nb) = n(mb). \end{equation*} Since both $nb$ and $mb$ are integers, this shows that $m \mid a$ and $n \mid a$. Thus \begin{equation*} a \in \{x \in \Z : m \mid x\} \cap \{ x \in \Z : n \mid x\}. \end{equation*} This completes the proof. \end{proof} \begin{theorem*}\label{8.6} Suppose $A,B$ and $C$ are sets. Prove that if $A\subseteq B$, then $A - C \subseteq B - C$. \end{theorem*} \begin{proof} To prove this directly, let us assume that $A \subseteq B$ and $x \in A - C$. We must show that $x \in B - C$. Since $x\in A - C$, by definition $x\in A$ and $x\notin C$. Since $A\subseteq B$, it follows that $x \in B$. Therefore, $x\in B$ and $x\notin C$. That is, by definition, $x \in B - C$. \end{proof} \begin{lemma}{(Distributive Rule)}\label{lemma} Let $P, Q$ and $R$ be statements. Then \begin{equation*} P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee R). \end{equation*} \end{lemma} \begin{proof} The following truth table proves the logical equivalence. \begin{center} \begin{tabular}{ c|c|c|c|c|c|c|c } $P$ & $Q$ & $R$ & $Q \wedge R$ & $P \vee Q$ & $P \vee R$ & $P \vee (Q \wedge R)$ & $(P \vee Q) \wedge (P \vee R)$ \\ \hline T &T &T &T &T &T &T &T \\ T &T &F &F &T &T &T &T \\ T &F &T &F &T &T &T &T \\ T &F &F &F &T &T &T &T \\ F &T &T &T &T &T &T &T \\ F &T &F &F &T &F &F &F \\ F &F &T &F &F &T &F &F \\ F &F &F &F &F &F &F &F \end{tabular} \end{center} \end{proof} \begin{theorem*}\label{8.8} If $A, B$ and $C$ are sets, then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. \end{theorem*} \begin{proof} We prove this directly using only definitions and logically equivalent statements. Note that the logical equivalence of lines 2 and 3 follows immediately from the previous lemma.\footnote{You are free to use without proof the distributive rule and all logical equivalences listed on page 52 of \href{https://www.people.vcu.edu/~rhammack/BookOfProof/}{Book of Proof}, by Richard Hammock.} \begin{align*} A \cup (B \cap C) &= \{x : (x \in A) \vee (x \in B \cap C)\} \\ &= \{x : (x \in A) \vee ((x \in B) \wedge (x \in C))\} \\ &= \{x : ((x \in A) \vee (x \in B)) \wedge ((x \in A) \vee (x \in C))\} \\ &= \{x : (x \in A) \vee (x \in B)\} \cap \{x : (x \in A) \vee (x \in C)\} \\ &= (A \cup B) \cap (A \cup C) \end{align*} \end{proof} \begin{theorem}\label{8.20} Prove that $\{9^n : n \in \Q\} = \{3^n : n \in \Q\}$. \end{theorem} \begin{proof} Set $A = \{9^n : n \in \Q\}$ and let $B = \{3^n : n \in \Q\}$. We prove the statement in two steps by showing $A\subseteq B$ and $B \subseteq A$. First we show that $A \subseteq B$. Let us assume that $x \in A$. Then there is a rational number $n$ such that \begin{equation*} x = 9^n = (3^2)^n = 3^{2n}. \end{equation*} Since $2n \in \Q$, it follows that $x \in B$. Now assume that $x\in B$. Then there is a rational number $m$ such that \begin{equation*} x = 3^m = \left(9^{1/2}\right)^m = 9^{m/2}. \end{equation*} Since $m/2\in\Q$, it follows that $x \in A$. This completes the proof. \end{proof} \begin{theorem*}\label{8.28} Prove that $\{12a + 25b : a,b\in\Z\} = \Z$. \end{theorem*} \begin{proof} We prove the statement in two steps. First, Since $12$ and $25$ are integers, it is clear that whenever $a$ and $b$ are integers then so is $12a + 25b$. This shows that $\{12a + 25b : a,b\in\Z\} \subseteq \Z$. Next, let $n \in \Z$. Observe that \begin{equation*} 1 = 12(-2) + 25(1), \end{equation*} and so \begin{equation*} n = n\cdot 1 = n\left( 12(-2) + 25(1) \right) = 12(-2n) + 25(n). \end{equation*} Since both $n$ and $-2n$ are integers, it follows that $n \in \{12a + 25b : a,b\in\Z\}$. Therefore $\Z \subset \{12a + 25b : a,b\in\Z\}$. This completes the proof. \end{proof} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{thebibliography}{99} %\bibitem{} %\newblock %\newblock %\end{thebibliography} \end{document}