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9.2 Theorem. Prove or disprove: For every natural number n, the integer 2n2−4n+31
is prime.

Proof. The statement is false. We show this by proving the negation: There exists
a natural number n such that 2n2 − 4n + 31 is not prime. Let n = 31. Then n is a
natural number and

n2 − 4n + 31 = 311 − 4 · 31 + 31 = 31(31− 4 + 1) = 31 · 28

is not prime. �

9.6 Theorem. Prove of disprove: If A,B, and C are sets, then

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

Proof. The statement is true and follows directly from definitions and logical equiv-
alences.

(A×B) ∩ (C ×D) = {(x, y) : (x ∈ A) ∧ (y ∈ B)} ∩ {(x, y) : (x ∈ C) ∧ (y ∈ D)}
= {(x, y) : ((x ∈ A) ∧ (y ∈ B)) ∧ ((x ∈ C) ∧ (y ∈ D))}
= {(x, y) : ((x ∈ A) ∧ (x ∈ C)) ∧ ((y ∈ B) ∧ (y ∈ D))}
= {(x, y) : (x ∈ (A ∩ C)) ∧ (y ∈ (B ∩D))}
= (A ∩ C)× (B ∩D).

�

9.30 Theorem. Prove or disprove: There exist integers a and b for which 42a + 7b = 1.

Proof. The statement is false. To show this, let us assume for the sake of contradic-
tion that the statement is true. Thus, we have two integers a and b such that

1 = 42a + 7b = 7(6a + b).

Since 6a+ b ∈ Z, this shows that 7 | 1⇒⇐. This contradicts the fact that 7 - 1, and
so the statement must be false. �

9.34 Theorem. Prove or disprove: If X ⊆ A ∪B, then X ⊆ A or X ⊆ B.
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Proof. The statement is false. Note that the statement is a universally quantified
statement:

∀ sets A and B, (X ⊆ A ∪B)⇒ ((X ⊆ A) ∨ (X ⊆ B)) .

Therefore, to disprove the statement it is enough to provide one counterexample –
three sets A,B, and X such that X ⊆ A ∪B and ∼ ((X ⊆ A) ∨ (X ⊆ B)), in other
words (X * A) ∧ (X * B).

Let A = {1, 2}, B = {2, 3}, and X = {1, 2, 3}. Since X = A ∪ B, we see that
X ⊆ A ∪ B. However, since 3 ∈ X but 3 /∈ A, we see that X * A. And since 1 ∈ A
but 1 /∈ B, we see that X * B. �

10.2 Theorem. Prove that

12 + 22 + 32 + . . . + n2 =
n(n + 1)(2n + 1)

6

for every positive integer n.

Proof. Let P (n) be the statement

P (n) : 12 + 22 + 32 + . . . + n2 =
n(n + 1)(2n + 1)

6
.

We must prove that all of the statements P (1), P (2), P (3), . . . are all true. We
proceed by induction. First, observe that

12 =
1(1 + 1)(2 · 1 + 1)

6
=

1 · 2 · 3
6

,

and so P (1) is true.
Now assume that P (n) is true for some integer n. We will use this to show that

P (n + 1) : 12 + 22 + 32 + . . . + (n + 1)2 =
(n + 1)((n + 1) + 1)(2(n + 1) + 1)

6
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is true. We have

12 + 22 + 32 + . . . + n2 + (n + 1)2 = (12 + 22 + 32 + . . . + n2) + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)[n(2n + 1) + 6(n + 1)]

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)((n + 1) + 1)(2(n + 1) + 1)

6

This completes the proof.1 �

10.6 Theorem. Prove that
n∑

i=1

(8i− 5) = 4n2 − n

for every positive integer n.

Proof. We proceed by induction. First, observe that
1∑

i=1

(8i− 5) = 8 · 1− 5 = 3 = 4 · 12 − 1,

and so the statement is true for n = 1.
Now assume that the statement is true for some positive integer n. We must show

that this implies that the statement is true for n + 1. We have
n+1∑
i=1

(8i− 5) =
n∑

i=1

(8i− 5) + 8(n + 1)− 5

= 4n2 − n + 8(n + 1)− 5

= 4n2 + 7n + 3

= (4n2 + 8n + 4)− (n + 1)

= 4(n + 1)2 − (n + 1).

1Notice that in the very last equation I’ve used parentheses to isolate (n + 1) in order to make
it very clear that this is the statement P (n + 1).
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This completes the proof.2 �

10.10 Theorem. Prove that 3 | (52n − 1) for every integer n ≥ 0.

Proof. We proceed by induction. First, observe that

52·0 − 1 = 1− 1 = 0 = 3 · 0,
and so 3 | 52·0 − 1. In other words, 3 | (52n − 1) is true when n = 0.

Now let us assume that 3 | (52n − 1) is true for some integer n ≥ 0. That is,
52n − 1 = 3a for some a ∈ Z. We must show that 3 | (52(n+1) − 1). We have

52(n+1) − 1 = 52n+2 − 25 + 24

= 25(52n − 1) + 24

= 25(3a) + 24

= 3(25a + 8).

Since 25a + 8 ∈ Z, this shows, by definition, that 3 | (52(n+1) − 1). �

10.16 Theorem. Prove that 2n + 1 ≤ 3n for every positive integer n.

Proof. We proceed by induction. First, observe that 21+1 ≤ 31, and so the statement
is true for n = 1.

Now assume that 2n + 1 ≤ 3n is true for some positive integer n. We must show
that this implies that 2n+1 + 1 ≤ 3n+1. We have

2n+1 + 1 < 2n+1 + 2 = 2(2n + 1)

≤ 2(3n)

< 3(3n) = 3n+1.

Therefore 2n+1 + 1 ≤ 3n+1. This completes the proof.3 �

10.19 Theorem. Prove that
1

1
+

1

4
+

1

9
+ . . . +

1

n2
≤ 2− 1

n

for every n ∈ N.
2Out of context, it is very strange to rewrite the polynomial 4n2 + 7n + 3 as the polynomial

(4n2 + 8n + 4) − (n + 1). But within the context of this proof by induction, we are motivated to
arrive at the final expression 4(n + 1)2 − (n + 1). You may find it helpful to work backwards from
the final expression in order to construct such a sequence of equations.

3Note that we could have used only ≤ in the final argument, instead of using <, = and ≤.
I chose to write my proof as I did in the hope that it helps the reader more easily see how the
expressions are changing from one to the next. Different authors may make different choices, and
that’s perfectly fine.
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Proof. We preceed by induction. First, observe that

1

1
≤ 2− 1

1
is true, and so the statement is true for n = 1.

Now let us assume that
1

1
+

1

4
+

1

9
+ . . . +

1

n2
≤ 2− 1

n
.

We must show that this implies that

1

1
+

1

4
+

1

9
+ . . . +

1

n2
+

1

(n + 1)2
≤ 2− 1

n + 1
.

Before we do this, notice that for all n ∈ N, we have

n + 1 ≥ n

and, multplying both sides by n + 1 yields

(n + 1)2 ≥ n(n + 1).

Taking the reciprocals of both sides and reversing the inequality, we see that

(1)
1

(n + 1)2
≤ 1

n(n + 1)
.

We will use this inequality in the following argument.

1

1
+

1

4
+

1

9
+ . . . +

1

n2
+

1

(n + 1)2
=

(
1

1
+

1

4
+

1

9
+ . . . +

1

n2

)
+

1

(n + 1)2

≤
(

2− 1

n

)
+

1

(n + 1)2

≤ 2− 1

n
+

1

n(n + 1)

= 2− 1

n + 1
.

Notice that inequality (1) was used in the third line. This completes the proof.
�
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