HOMEWORK 9-DISCRETE MATH SPRING 2023

JOHN ADAMSKI

11.1.2 Theorem. Let $A=\{1,2,3,4,5,6\}$. Write out the relation R that expresses \mid (divides) on A. Then illustrate it with a diagram.

Proof. By definition,

$$
\begin{aligned}
& R=\{(x, y) \in A \times A: x \mid y\} \\
&=\left\{\begin{array}{l}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
(2,2),(2,4),(2,6), \\
(3,3),(3,6), \\
(4,4), \\
(5,5), \\
(6,6)
\end{array}\right.
\end{aligned}
$$

11.1 .10 Theorem. Consider the subset $R=(\mathbb{R} \times \mathbb{R})-\{(x, x): x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$. What familiar relation on \mathbb{R} is this? Explain.

Proof. We see that R contains all ordered pairs of real numbers except those with the first and second components/coordinates equal to each other. In other words, $x R y$ if and only if $x \neq y$, i.e. R is the relation \neq.
11.1.12 Theorem. A subset R of \mathbb{R}^{2} is indicated by gray shading. State this familar relation on \mathbb{R}.

Proof. Since $(x, y) \in R$ if and only if $x \geq y$, we see that R is the relation \geq.
11.1.14 Theorem. A subset R of \mathbb{Z}^{2} is indicated by gray shading. State this familar relation on \mathbb{Z}.

Proof. Since $(x, y) \in R$ if and only if $x<y$, we see that R is the relation $<$.
11.2.2 Theorem. Consider the relation $R=\{(a, b),(a, c),(c, c),(b, b),(c, b),(b, c)\}$ on the set $A=\{a, b, c\}$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.

Proof. The relation R is not reflexive or symmetric, but it is transitive.

- R is not reflexive. In order to be reflexive, R would have to contain $(a, a),(b, b)$ and (c, c). But R does not contain (a, a).
- R is not symmetric. Since R contains (a, b), in order to be symmetric R would have to also contain (b, a), but it does not. The same could be said about $(a, c) \in R$ and $(c, a) \notin R$.
- R is transitive.
11.2.6 Theorem. Consider the relation $R=\{(x, x): x \in \mathbb{Z}\}$. Is this R reflexive? Symmetric? Transitive? If a property does not hold, say why. What familiar relation is this?

Proof. This relation is reflexive, symmetric, and transitive. It is the familar relation $=$.
11.2.8 Theorem. Define a relation on \mathbb{Z} as $x R y$ if $|x-y|<1$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why. What familiar relation is this?

Proof. This relation is reflexive, symmetric, and transitive. It is the familar relation $=$.
11.3.2 Theorem. Let $A=\{a, b, c, d, e\}$. Suppose R is an equivalence relation on A. Suppose R has two equivalence classes. Also aRd,bRc, and eRd. Write out R as a set.

Proof. In the diagram below, the black arrows are the specified relations. The red arrows are necessary in order for R to be reflexive. The blue arrows are necessary in order for R to be symmetric (they point in the opposite direction as the black arrows). The purple arrows are necessary in order for R to be transitive.

Thus,

$$
R=\left\{\begin{array}{l}
(a, d),(b, c),(e, d), \\
(a, a),(b, b),(c, c),(d, d),(e, e), \\
(d, a),(c, b),(d, e), \\
(a, e),(e, a)
\end{array}\right\}
$$

11.3.10 Theorem. Suppose R and S are two equivalence relations on a set A. Prove that $R \cap S$ is also an equivalence relation.

Proof. Assume R and S are two equivalence relations on a set A. In order to show that $R \cap S$ is an equivalence relation, we must show that $R \cap S$ is reflexive, symmetric, and transitive.

First we show that R is reflexive. Since both R and S are equivalance relations, both R and S are reflexive. Thus, for any $a \in A,(a, a) \in R$ and $(a, a) \in S$. It follows that $(a, a) \in R \cap S$, and so $R \cap S$ is reflexive.

Next we show that $R \cap S$ is symmetric. Since both R and S are equivalence relations, both R and S are symmetric. Assume $(a, b) \in R \cap S$. Then, since $(a, b) \in R$ and R is symmetric, $(b, a) \in R$. Also, since $(a, b) \in S$ and S is symmetric, we have $(b, a) \in S$. Thus, $(b, a) \in R \cap S$, and so $R \cap S$ is symmetric..

Finally we show that $R \cap S$ is transitive. Since both R and S are equivalence relations, both R and S are transitive. Assume $(a, b),(b, c) \in R \cap S$. Then, since $(a, b),(b, c) \in R$ and R is transitive, we have $(a, c) \in R$. Similarly, since $(a, b),(b, c) \in$ S and S is transitive, we have $(a, c) \in S$. Thus, $(a, c) \in R \cap S$, and so $R \cap S$ is transitive.
11.4.4 Theorem. Suppose P is a partition of a set A. Define a relation R on A by declaring $x R y$ if and only if $x, y \in X$ for some $X \in P$. Prove R is an equivalence relation on A. Then prove that P is the set of equivalence classes of R.

Proof. To begin, let us show that R is an equivalence relation on A.
First we show that R is reflexive. Let a be any element of A. Since P is a partition on A, by definition A is the union of all subsets in P. Therefore, a belongs to some $X \in P$. Thus, it is true (though redundant) to say that $a, a \in X$ for some $X \in P$, and so R is relexive.

Next we show that R is symmetric. Assume $a, b \in A$ and $a R b$. That is, $a, b \in X$ for some $X \in P$. This is clearly equivalent to the statement that $b, a \in X$ for some $X \in P$, and so $b R a$. This shows that R is symmetric.

Lastly we show that R is transitive. Assume $a R b$ and $b R c$. Then, by definition, there exists some $X \in P$ such that $a, b \in X$ and some $Y \in P$ such that $b, c \in Y$. Since P is a partition, by definition, if $X \neq Y$ then $X \cap Y=\emptyset$. Equivalently, if $X \cap Y \neq \emptyset$, then $X=Y$ (contrapositive). Since $b \in X \cap Y$, it follows that $X \cap Y \neq \emptyset$, and so $X=Y$. Now we see that a, b, c all belong to the same subset $X \in P$ and, in particular, $a R c$. This shows that R is transitive and completes the proof that R is an equivalence relation.

To finish the proof, we must show that P is the set of equivalence classes on A. By theorem 11.2 in Book of Proof by Richard Hammock, the set $C=\{[a]: a \in A\}$ of equivalence classes of R forms a partition of A. What remains is to show that this partition C is equal to the partition P. We do this using definitions and logical
equivalences.

$$
\begin{aligned}
C & =\{[a]: a \in A\} \\
& =\{\{x \in A: x R a\}: a \in A\} \\
& =\{\{x \in A: x, a \in X, \text { for some } X \in P\}: a \in A\} \\
& =\{\text { the subset in } P \text { that contains } a: a \in A\} \\
& =P
\end{aligned}
$$

Department of Mathematics, Fordham University
Email address: adamski@fordham.edu
URL: www.johnadamski.com

