HOMEWORK 10 - DISCRETE MATH SPRING 2023

JOHN ADAMSKI

11.5.4 Theorem. Write the addition and multiplication tables for \mathbb{Z}_{6}.

Proof. Addition table:

+	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[1]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[0]$
$[2]$	$[2]$	$[3]$	$[4]$	$[5]$	$[0]$	$[1]$
$[3]$	$[3]$	$[4]$	$[5]$	$[0]$	$[1]$	$[2]$
$[4]$	$[4]$	$[5]$	$[0]$	$[1]$	$[2]$	$[3]$
$[5]$	$[5]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$

Multiplication table:

\times	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[2]$	$[0]$	$[2]$	$[4]$	$[0]$	$[2]$	$[4]$
$[3]$	$[0]$	$[3]$	$[0]$	$[3]$	$[0]$	$[3]$
$[4]$	$[0]$	$[4]$	$[2]$	$[0]$	$[4]$	$[2]$
$[5]$	$[0]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

11.5.6 Theorem 1. Suppose $[a],[b] \in \mathbb{Z}_{6}$ and $[a] \cdot[b]=0$. Is it necessarily true that either $[a]=0$ or $[b]=0$? What if $[a],[b] \in \mathbb{Z}_{7}$?

Proof. If $[a],[b] \in \mathbb{Z}_{6}$, then it is not necessarily true that $[a]=0$ or $[b]=0$. As a counterexample, set $[a]=[2]$ and $[b]=[3]$. Then $[a] \cdot[b]=[2] \cdot[3]=[6]=[0]$.

However, if $[a],[b] \in \mathbb{Z}_{7}$, then it is necessarily true that either $[a]=[0]$ or $[b]=[0]$. To prove this, assume for the sake of contradiction that there exist $[a],[b] \in \mathbb{Z}_{7}$ such that $[a] \cdot[b]=[0]$ and $[a] \neq[0]$ and $[b] \neq[0]$. Since $[a] \cdot[b]=[0]$, this means $[a b]=[0]$, and so $a b=7 n$ for some $n \in \mathbb{Z}$. That is, $a b$ is a multiple of 7 . On the other hand, since $[a] \neq[0]$ and $[b] \neq[0]$, neither a nor b is a multiple of 7 . But since 7 is prime, a
or b would have to be a multiple of 7 for their product to be a multiple of $7 .{ }^{1}$ This is a contradiction. Thus it must be impossible for both $[a] \cdot[b]$ to be $[0]$ and for neither $[a]$ nor $[b]$ to be $[0]$. That is, if $[a] \cdot[b]=0$ then $[a]=[0]$ or $[b]=[0]$.

Alternatively, we could show by brute force that this is impossible by producing the mutliplcation table for \mathbb{Z}_{7}. Observe that [0] does not appear outside of the first column or first row.

\times	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$
$[2]$	$[0]$	$[2]$	$[4]$	$[6]$	$[1]$	$[3]$	$[5]$
$[3]$	$[0]$	$[3]$	$[6]$	$[2]$	$[5]$	$[1]$	$[4]$
$[4]$	$[0]$	$[4]$	$[1]$	$[5]$	$[2]$	$[6]$	$[3]$
$[5]$	$[0]$	$[5]$	$[3]$	$[1]$	$[6]$	$[4]$	$[2]$
$[6]$	$[0]$	$[6]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

11.5.8 Theorem 2. Suppose $[a],[b] \in \mathbb{Z}_{n}$, and $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$. Alice adds $[a]$ and $[b]$ as $[a]+[b]=[a+b]$. Bob adds them as $\left[a^{\prime}\right]+\left[b^{\prime}\right]=\left[a^{\prime}+b^{\prime}\right]$. Show that their answers $[a+b]$ and $\left[a^{\prime}+b^{\prime}\right]$ are the same.
Proof. Let $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$. We need to show that $[a=b]=\left[a^{\prime}+b^{\prime}\right]$. Since $[a]=\left[a^{\prime}\right]$, we have $a \equiv a^{\prime}(\bmod n)$ and so $a-a^{\prime}=j n, j \in \mathbb{Z}$. Similarly, since $[b]=\left[b^{\prime}\right]$, we have $b \equiv b^{\prime}(\bmod n)$ and so $b-b^{\prime}=k n, k \in \mathbb{Z}$. Thus $a=a^{\prime}+j n$ and $b=b^{\prime}+k n$, and so

$$
a+b=a^{\prime}+j n+b^{\prime}+k n
$$

That is,

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=n(j+k)
$$

Since $j+k \in \mathbb{Z}$, this means that $a+b \equiv a^{\prime}+b^{\prime}(\bmod n)$, and so $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.
12.1.2 Theorem 3. Suppose $A=\{a, b, c, d\}, B=\{2,3,4,5,6\}$, and $f=\{(a, 2),(b, 3),(c, 4),(d, 5)\}$. State the domain and range of f. Find $f(2)$ and $f(1)$.

Proof. The domain of f is the set of all first components of ordered pairs in f. That is, $\{a, b, c, d\}$, which is A. The range of f is the set of all second components of ordered pairs in f. That is, $\{2,3,4,5\}$, which is a subset of B. Since $(b, 3) \in f$, we have $f(b)=3$. Since $(d, 5) \in f$, we have $f(d)=5$.

[^0]12.1.4 Theorem 4. There are eight diferent functions $f:\{a, b, c\} \rightarrow\{0,1\}$. List them. Diagrams suffice.

Proof. We take every possible assignment of an element in the codomain to each element of the domain.

12.1.6 Theorem 5. Suppose $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined as $f=\{(x, 4 x+5): x \in \mathbb{Z}\}$. State the domain, codomain, and range of f. Find $f(10)$.

Proof. The domain is \mathbb{Z} and the codomain is \mathbb{Z}, the range is the set

$$
\{4 x+5: x \in \mathbb{Z}\}=\{\ldots,-7,-3,1,5,9,13,17, \ldots\}
$$

and $f(10)=45$.
12.1.8 Theorem 6. Consider the set $f=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x+3 y=4\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ? Explain.

Proof. For the sake of contradiction, assume that f is a function from \mathbb{Z} to \mathbb{Z}. Then for every $x \in \mathbb{Z}$, there must be some $y \in \mathbb{Z}$ such that $x+3 y=4$. In particular, when $x=0$ there must be some $y \in \mathbb{Z}$ such that $3 y=4$. But this means that 3 divides 4 , which is false. This contradiction implies that f is not a function from \mathbb{Z} to \mathbb{Z}.
12.1.12 Theorem 7. Is the set $\theta=\{((x, y),(3 y, 2 x, x+y)): x, y \in \mathbb{R}\}$ a function? If so, what is its domain and range? What can be said about the codomain?

Proof. For every point $(x, y) \in \mathbb{R}^{2}$, exactly one ordered pair with the point (x, y) as its first component appears in θ. This is enough to conclude that θ is a function with domain \mathbb{R}^{2}. The range of f is the set

$$
\left\{(3 y, 2 x, x+y):(x, y) \in \mathbb{R}^{2}\right\}
$$

If you are familiar with vectors, we can describe this set as

$$
\{x\langle 0,2,1\rangle+y\langle 3,0,1\rangle: x, y \in \mathbb{R}\}
$$

which is the plane though the origin that contains the two vectors $\langle 0,2,1\rangle$ and $\langle 3,0,1\rangle$. The codomain can be any set that contains the range as a subset. One possibility for the codomain is \mathbb{R}^{3}.
12.2.4 Theorem 8. A function $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is defined as $f(n)=(2 n, n+3)$. Verify whether this function is injective and whether it is surjective.

Proof. The function is injective. To prove this, assume $x, y \in \mathbb{Z}$ and $f(x)=f(y)$. Then $(2 x, x+3)=(2 y, y+3)$. This means, in particular, that $2 x=2 y$ Therefore $x=y$, and this completes the proof.

The function $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is not surjective. That is to say that there exists at least one point (a, b) in the codomain $\mathbb{Z} \times \mathbb{Z}$ that is not in the range of f. Notice that for every $x \in \mathbb{Z}$, the first component of $f(x)$ is $2 x$, which is even. Thus, no point $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with a odd appears in the range of f. For a specific example, $(1,0)$ is in the codomain $\mathbb{Z} \times \mathbb{Z}$, but not in the range of f.
12.2.6 Theorem 9. A function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is defined as $f(m, n)=3 n-4 m$. Verify whether this function is injctive and whether it is surjective.

Proof. The function f is not injective. To prove this, it is enough to provide an example of two points (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ in the domain $\mathbb{Z} \times \mathbb{Z}$ such that $f(a, b)=$ $f\left(a^{\prime}, b^{\prime}\right)$. Oberve that $(0,0)$ and $(3,4)$ are two such points:

$$
f(0,0)=3 \cdot 0-4 \cdot 0=0=3 \cdot 4-4 \cdot 3=f(3,4) .
$$

The function f is surjective. To prove this, let a be any integer. We must show that there exists an orderd pair $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ such that $f(m, n)=a$. If we first observe that $f(-1,-1)=3(-1)-4(-1)=1$, then we are halfway there. In fact, for any $a \in \mathbb{Z}$, we have

$$
f(-a,-a)=3(-a)-4(-a)=a
$$

This completes the proof.
12.2.10 Theorem 10. Prove the function $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}$ defined by $f(x)=\left(\frac{x+1}{x-1}\right)^{3}$ is bijective.

Proof. First we prove that f is injective. Assume $x, x^{\prime} \in \mathbb{R}-\{1\}$ and $f(x)=f\left(x^{\prime}\right)$. Then

$$
\begin{aligned}
\left(\frac{x+1}{x-1}\right)^{3} & =\left(\frac{x^{\prime}+1}{x^{\prime}-1}\right)^{3} \\
\frac{x+1}{x-1} & =\frac{x^{\prime}+1}{x^{\prime}-1} \\
(x+1)\left(x^{\prime}-1\right) & =(x-1)\left(x^{\prime}+1\right) \\
x x^{\prime}-x+x^{\prime}-1 & =x x^{\prime}+x-x^{\prime}-1 \\
2 x^{\prime} & =2 x \\
x^{\prime} & =x .
\end{aligned}
$$

Thus, $f(x)=f\left(x^{\prime}\right) \Longrightarrow x=x^{\prime}$ and so f is injective.
Now we prove that f is surjective. Let $y \in \mathbb{R}-\{1\}$. By setting ${ }^{2}$

$$
x=\frac{y^{1 / 3}+1}{y^{1 / 3}-1} \in \mathbb{R}-\{1\},
$$

we see that

$$
\begin{aligned}
f(x) & =f\left(\frac{y^{1 / 3}+1}{y^{1 / 3}-1}\right) \\
& =\left(\frac{\frac{y^{1 / 3}+1}{y^{1 / 3}-1}+1}{\frac{y^{1 / 3}+1}{y^{1 / 3}-1}-1}\right)^{3}=\left(\frac{\left(\frac{y^{1 / 3}+1}{y^{1 / 3}-1}+1\right) \cdot\left(y^{1 / 3}-1\right)}{\left(\frac{y^{1 / 3}+1}{y^{1 / 3}-1}-1\right) \cdot\left(y^{1 / 3}-1\right)}\right)^{3} \\
& =\left(\frac{y^{1 / 3}+1+y^{1 / 3}-1}{y^{1 / 3}+1-\left(y^{1 / 3}-1\right)}\right)^{3} \\
& =\left(\frac{2 y^{1 / 3}}{2}\right)^{3}=\left(y^{1 / 3}\right)^{3} \\
& =y
\end{aligned}
$$

Department of Mathematics, Fordham University
Email address: adamski@fordham.edu
URL: www.johnadamski.com
${ }^{2}$ This is $f^{-1}(y)$, which is found by solving the equation $y=\left(\frac{x+1}{x-1}\right)^{3}$ for x.

[^0]: ${ }^{1} \mathrm{~A}$ more technical argument would point out that the integers $a b$ and $7 n$ have unique prime factorizations (see Fundamental theorem of arithmetic). Since 7 appears in the prime factorization of $7 n$, it must appear in the prime factorization of $a b$, which is the product of prime factors of a and prime factors of b. Thus 7 must be a (prime) factor of a or b.

