HOMEWORK 10 - DISCRETE MATH SPRING 2023

JOHN ADAMSKI

11.5.4 Theorem. Write the addition and multiplication tables for \mathbb{Z}_6 .

Proof. Addition table:

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

Multiplication table:

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

11.5.6 Theorem 1. Suppose $[a], [b] \in \mathbb{Z}_6$ and $[a] \cdot [b] = 0$. Is it necessarily true that either [a] = 0 or [b] = 0? What if $[a], [b] \in \mathbb{Z}_7$?

Proof. If $[a], [b] \in \mathbb{Z}_6$, then it is *not* necessarily true that [a] = 0 or [b] = 0. As a counterexample, set [a] = [2] and [b] = [3]. Then $[a] \cdot [b] = [2] \cdot [3] = [6] = [0]$.

However, if $[a], [b] \in \mathbb{Z}_7$, then it *is* necessarily true that either [a] = [0] or [b] = [0]. To prove this, assume for the sake of contradiction that there exist $[a], [b] \in \mathbb{Z}_7$ such that $[a] \cdot [b] = [0]$ and $[a] \neq [0]$ and $[b] \neq [0]$. Since $[a] \cdot [b] = [0]$, this means [ab] = [0], and so ab = 7n for some $n \in \mathbb{Z}$. That is, ab is a multiple of 7. On the other hand, since $[a] \neq [0]$ and $[b] \neq [0]$, neither a nor b is a multiple of 7. But since 7 is prime, a or *b* would *have* to be a multiple of 7 for their product to be a multiple of 7.¹ This is a contradiction. Thus it must be impossible for both $[a] \cdot [b]$ to be [0] and for neither [a] nor [b] to be [0]. That is, if $[a] \cdot [b] = 0$ then [a] = [0] or [b] = [0].

Alternatively, we could show by brute force that this is impossible by producing the multiplication table for \mathbb{Z}_7 . Observe that [0] does not appear outside of the first column or first row.

\times	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

11.5.8 Theorem 2. Suppose $[a], [b] \in \mathbb{Z}_n$, and [a] = [a'] and [b] = [b']. Alice adds [a] and [b] as [a] + [b] = [a+b]. Bob adds them as [a'] + [b'] = [a'+b']. Show that their answers [a+b] and [a'+b'] are the same.

Proof. Let [a] = [a'] and [b] = [b']. We need to show that [a = b] = [a' + b']. Since [a] = [a'], we have $a \equiv a' \pmod{n}$ and so $a - a' = jn, j \in \mathbb{Z}$. Similarly, since [b] = [b'], we have $b \equiv b' \pmod{n}$ and so $b - b' = kn, k \in \mathbb{Z}$. Thus a = a' + jn and b = b' + kn, and so

$$a+b = a'+jn+b'+kn.$$

That is,

$$(a+b) - (a'+b') = n(j+k).$$

Since $j + k \in \mathbb{Z}$, this means that $a + b \equiv a' + b' \pmod{n}$, and so [a + b] = [a' + b']. \Box

12.1.2 Theorem 3. Suppose $A = \{a, b, c, d\}, B = \{2, 3, 4, 5, 6\}, and f = \{(a, 2), (b, 3), (c, 4), (d, 5)\}.$ State the domain and range of f. Find f(2) and f(1).

Proof. The domain of f is the set of all first components of ordered pairs in f. That is, $\{a, b, c, d\}$, which is A. The range of f is the set of all second components of ordered pairs in f. That is, $\{2, 3, 4, 5\}$, which is a subset of B. Since $(b, 3) \in f$, we have f(b) = 3. Since $(d, 5) \in f$, we have f(d) = 5.

¹A more technical argument would point out that the integers ab and 7n have unique prime factorizations (see Fundamental theorem of arithmetic). Since 7 appears in the prime factorization of 7n, it must appear in the prime factorization of ab, which is the product of prime factors of aand prime factors of b. Thus 7 must be a (prime) factor of a or b.

12.1.4 Theorem 4. There are eight different functions $f : \{a, b, c\} \rightarrow \{0, 1\}$. List them. Diagrams suffice.

Proof. We take every possible assignment of an element in the codomain to each element of the domain.

12.1.6 Theorem 5. Suppose $f : \mathbb{Z} \to \mathbb{Z}$ is defined as $f = \{(x, 4x + 5) : x \in \mathbb{Z}\}$. State the domain, codomain, and range of f. Find f(10).

Proof. The domain is \mathbb{Z} and the codomain is \mathbb{Z} , the range is the set

$$\{4x+5 : x \in \mathbb{Z}\} = \{\dots, -7, -3, 1, 5, 9, 13, 17, \dots\},\$$

and f(10) = 45.

12.1.8 Theorem 6. Consider the set $f = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + 3y = 4\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ? Explain.

Proof. For the sake of contradiction, assume that f is a function from \mathbb{Z} to \mathbb{Z} . Then for every $x \in \mathbb{Z}$, there must be some $y \in \mathbb{Z}$ such that x + 3y = 4. In particular, when x = 0 there must be some $y \in \mathbb{Z}$ such that 3y = 4. But this means that 3 divides 4, which is false. This contradiction implies that f is *not* a function from \mathbb{Z} to \mathbb{Z} . \Box

12.1.12 Theorem 7. Is the set $\theta = \{((x, y), (3y, 2x, x + y)) : x, y \in \mathbb{R}\}$ a function? If so, what is its domain and range? What can be said about the codomain?

Proof. For every point $(x, y) \in \mathbb{R}^2$, exactly one ordered pair with the point (x, y) as its first component appears in θ . This is enough to conclude that θ is a function with domain \mathbb{R}^2 . The range of f is the set

 $\{(3y, 2x, x+y) : (x, y) \in \mathbb{R}^2\}.$

If you are familiar with vectors, we can describe this set as

$$\{x\langle 0,2,1\rangle + y\langle 3,0,1\rangle : x,y \in \mathbb{R}\}$$

which is the plane though the origin that contains the two vectors $\langle 0, 2, 1 \rangle$ and $\langle 3, 0, 1 \rangle$. The codomain can be any set that contains the range as a subset. One possibility for the codomain is \mathbb{R}^3 .

12.2.4 Theorem 8. A function $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is defined as f(n) = (2n, n+3). Verify whether this function is injective and whether it is surjective.

Proof. The function is injective. To prove this, assume $x, y \in \mathbb{Z}$ and f(x) = f(y). Then (2x, x + 3) = (2y, y + 3). This means, in particular, that 2x = 2y Therefore x = y, and this completes the proof.

The function $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is not surjective. That is to say that there exists at least one point (a, b) in the codomain $\mathbb{Z} \times \mathbb{Z}$ that is not in the range of f. Notice that for every $x \in \mathbb{Z}$, the first component of f(x) is 2x, which is even. Thus, no point $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with a odd appears in the range of f. For a specific example, (1, 0) is in the codomain $\mathbb{Z} \times \mathbb{Z}$, but not in the range of f.

12.2.6 Theorem 9. A function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is defined as f(m, n) = 3n - 4m. Verify whether this function is injective and whether it is surjective.

Proof. The function f is not injective. To prove this, it is enough to provide an example of two points (m, n) and (m', n') in the domain $\mathbb{Z} \times \mathbb{Z}$ such that f(a, b) = f(a', b'). Observe that (0, 0) and (3, 4) are two such points:

$$f(0,0) = 3 \cdot 0 - 4 \cdot 0 = 0 = 3 \cdot 4 - 4 \cdot 3 = f(3,4).$$

The function f is surjective. To prove this, let a be any integer. We must show that there exists an orderd pair $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ such that f(m, n) = a. If we first observe that f(-1, -1) = 3(-1) - 4(-1) = 1, then we are halfway there. In fact, for any $a \in \mathbb{Z}$, we have

$$f(-a, -a) = 3(-a) - 4(-a) = a.$$

This completes the proof.

12.2.10 Theorem 10. Prove the function $f : \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ defined by $f(x) = \left(\frac{x+1}{x-1}\right)^3$ is bijective.

Proof. First we prove that f is injective. Assume $x, x' \in \mathbb{R} - \{1\}$ and f(x) = f(x'). Then

$$\left(\frac{x+1}{x-1}\right)^3 = \left(\frac{x'+1}{x'-1}\right)^3$$
$$\frac{x+1}{x-1} = \frac{x'+1}{x'-1}$$
$$(x+1)(x'-1) = (x-1)(x'+1)$$
$$xx'-x+x'-1 = xx'+x-x'-1$$
$$2x' = 2x$$
$$x' = x.$$

Thus, $f(x) = f(x') \implies x = x'$ and so f is injective.

Now we prove that f is surjective. Let $y \in \mathbb{R} - \{1\}$. By setting²

$$x = \frac{y^{1/3} + 1}{y^{1/3} - 1} \in \mathbb{R} - \{1\},\$$

we see that

$$\begin{split} f(x) &= f\left(\frac{y^{1/3}+1}{y^{1/3}-1}\right) \\ &= \left(\frac{\frac{y^{1/3}+1}{y^{1/3}-1}+1}{\frac{y^{1/3}+1}{y^{1/3}-1}-1}\right)^3 = \left(\frac{(\frac{y^{1/3}+1}{y^{1/3}-1}+1)\cdot(y^{1/3}-1)}{(\frac{y^{1/3}+1}{y^{1/3}-1}-1)\cdot(y^{1/3}-1)}\right)^3 \\ &= \left(\frac{y^{1/3}+1+y^{1/3}-1}{y^{1/3}+1-(y^{1/3}-1)}\right)^3 \\ &= \left(\frac{2y^{1/3}}{2}\right)^3 = \left(y^{1/3}\right)^3 \\ &= y. \end{split}$$

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY Email address: adamski@fordham.edu URL: www.johnadamski.com

²This is $f^{-1}(y)$, which is found by solving the equation $y = \left(\frac{x+1}{x-1}\right)^3$ for x.