# HOMEWORK 11 - DISCRETE MATH SPRING 2023 

JOHN ADAMSKI

12.4.4 Theorem. Suppose $A=\{a, b, c\}$. Left $f: A \rightarrow A$ be the function $f=\{(a, c),(b, c),(c, c)\}$, and let $g: A \rightarrow A$ be the function $g=\{(a, a),(b, b),(c, a)\}$. Find $g \circ f$ and $f \circ g$.
Proof.

$$
\begin{aligned}
g \circ f & =\{(a, a),(b, a),(c, a)\} \\
f \circ g & =\{(a, c),(b, c),(c, c)\}
\end{aligned}
$$

12.4.8 Theorem. Consider the functions $f, g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined as $f(m, n)=$ $(3 m-4 n, 2 m+n)$ and $g(m, n)=(5 m+n, m)$. Find the formulas for $g \circ f$ and $f \circ g$. Proof.

$$
\begin{aligned}
g \circ f(m, n) & =g(3 m-4 n, 2 m+n) \\
& =(5(3 m-4 n)+(2 m+n),(3 m-4 n)) \\
& =(17 m-19 n, 3 m-4 n) \\
f \circ g(m, n) & =f(5 m+n, m) \\
& =(3(5 m+n)-4 m, 2(5 m+n)+m) \\
& =(11 m+3 n, 11 m+2 n)
\end{aligned}
$$

12.4.10 Theorem 1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defines by the formula $f(x, y)=$ $\left(x y, x^{3}\right)$. Find a formula for $f \circ f$.
Proof.

$$
\begin{aligned}
f \circ f(x, y) & =f\left(x y, x^{3}\right) \\
& =\left(x y\left(x^{3}\right),(x y)^{3}\right) \\
& =\left(x^{4} y, x^{3} y^{3}\right)
\end{aligned}
$$

12.5.2 Theorem. In exercise 9 of Section 12.2 you proved that $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{5\}$ defined by $f(x)=\frac{5 x+1}{x-2}$ is bijective. Now find its inverse.

Proof. Set $y=f(x)$.

$$
y=\frac{5 x+1}{x-2}
$$

Solve for $x$. This is possible because $f$ is injective.

$$
\begin{aligned}
x y-2 y & =5 x+1 \\
x(y-5) & =2 y+1 \\
x & =\frac{2 y+1}{y-5}
\end{aligned}
$$

This is the equation $x=f^{-1}(y)$. It is defined for all $y$ in the codomain of $f$ because $f$ is surjective. Thus

$$
f^{-1}(x)=\frac{2 x+1}{x-5}
$$

12.5.6 Theorem. The function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by the formula $f(m, n)=$ $(5 m+4 n, 4 m+3 n)$ is bijective. Find its inverse.
Proof. Set $(x, y)=f(m, n)$.

$$
(x, y)=(5 m+4 n, 4 m+3 n)
$$

This gives a system of 2 equations.

$$
\begin{align*}
& 5 m+4 n=x  \tag{1}\\
& 4 m+3 n=y \tag{2}
\end{align*}
$$

Adding -3 times equation (1) and 4 times equation (2), we have

$$
m=4 y-3 x
$$

Adding 4 times equation (1) and -5 times equation (2), we have

$$
n=4 x-5 y
$$

Thus,

$$
\begin{aligned}
(m, n) & =(4 y-3 x, 4 x-5 y), \text { i.e. } \\
f^{-1}(x, y) & =(4 y-3 x, 4 x-5 y)
\end{aligned}
$$

12.6.2 Theorem. Consider the function $f:\{1,2,3,4,5,6,7\} \rightarrow\{0,1,2,3,4,5,6,7,8,9\}$ given as

$$
f=\{(1,3),(2,8),(3,3),(4,1),(5,2),(6,4),(7,6)\}
$$

Find $f(\{1,2,3\}), f(\{4,5,6,7\}), f(\emptyset), f^{-1}(\{0,5,9\})$, and $f^{-1}(\{0,3,5,9\})$.

Proof.

$$
\begin{aligned}
f(\{1,2,3\}) & =\{3,8\} \\
f(\{4,5,6,7\}) & =\{1,2,4,6\} \\
f(\emptyset) & =\emptyset \\
f^{-1}(\{0,5,9\}) & =\emptyset \\
f^{-1}(\{0,3,5,9\}) & =\{1,3\}
\end{aligned}
$$

12.6.6 Theorem. Given a function $f: A \rightarrow B$ and a subset $Y \subseteq B$, is $f\left(f^{-1}(Y)\right)=Y$ always true? Prove or give a counterexample.

Proof. No. As a counterexample, consider the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined as $f(n)=$ 1 (a constant function), and set $Y=\mathbb{N}$ (the entire codomain). Then $f^{-1}(Y)=\mathbb{N}$ (the inverse of the codomain is always the domain), but $f\left(f^{-1}(Y)\right)=f(\mathbb{N})=\{1\} \neq Y$.

For this counterexample, notice that the range of $f$ is so small in comparison to the codomain, it is no wonder why we do not recover the original set $Y$. However, if $f$ was surjective then we would always recove the original set $Y$ and the statement $f\left(f^{-1}(Y)\right)=Y$ would be true.

Department of Mathematics, Fordham University
Email address: adamski@fordham.edu
URL: www.johnadamski.com

