EXAM 2 STUDY GUIDE

JOHN ADAMSKI

SETS

You need to understand what the following sets are.
(1) $\emptyset=\{ \}$ (emptry set)
(2) $\mathbb{N}=\{1,2,3, \ldots\}$ (natural numbers)
(3) $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ (integers)
(4) $\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ (rational numbers)
(5) \mathbb{R} (real numbers)
(6) Intervals on \mathbb{R} :
(a) $(a, b)=\{x \in \mathbb{R}: a<x<b\}$
(b) $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$
(c) $[a, \infty)=\{x \in \mathbb{R}: a \leq x\}$
(d) etc.

Definitions

You should know the following definitions and know how to use them.
(1) An integer n is even if $n=2 a$ for some $a \in \mathbb{Z}$.
(2) An integer n is odd if $n=2 a+1$ for some $a \in \mathbb{Z}$.
(3) A real number r is rational if $r=a / b$ for some $a, b \in \mathbb{Z}$; it is irrational if there are no integers $a, b \in \mathbb{Z}$ with $r=a / b$.
(4) Suppose $a, b \in \mathbb{Z}$. We write $a \mid b$ and say a divivides b if $b=k a$ for some $k \in \mathbb{Z}$.
(5) Suppose $a, b, n \in \mathbb{Z}$ and $n \geq 2$. We write $a \equiv b(\bmod n)$ and say a is equivalent to b modulo (mod) n if $n \mid(a-b)$.
(6) The Cartesian product of A and B is $A \times B=\{(x, y): x \in A, y \in B\}$.
(7) The power set of A is $\mathcal{P}(A)=\{X: X \subseteq A\}$
(8) We write $A \subseteq B$ and say A is a subset of B if $(x \in A) \Rightarrow(x \in B)$.
(9) We write $A=B$ and say A equals B if $A \subseteq B$ and $B \subseteq A$.

Techniques/Concepts

(1) Direct proof
(2) Contrapositive proof
(3) Proof by contradiction
(4) If-and-only-if proof
(5) Effective use of cases
(6) Proof of existence statements
(7) Mathematical induction (strong)
(8) Disproof by counterexample (smallest)
(9) De Morgan's laws
(a) $\sim(P \vee Q)=(\sim P) \wedge(\sim Q)$
(b) $\sim(P \wedge Q)=(\sim P) \vee(\sim Q)$

