EXAM 2 STUDY GUIDE

JOHN ADAMSKI

Sets

You need to understand what the following sets are.

- (1) $\emptyset = \{\}$ (emptry set)
- (2) $\mathbb{N} = \{1, 2, 3, ...\}$ (natural numbers)
- (3) $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ (integers)
- (4) $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$ (rational numbers)
- (5) \mathbb{R} (real numbers)
- (6) Intervals on \mathbb{R} :
 - (a) $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
 - (b) $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$
 - (c) $[a, \infty) = \{x \in \mathbb{R} : a \le x\}$
 - (d) etc.

DEFINITIONS

You should know the following definitions and know how to use them.

- (1) An integer n is even if n = 2a for some $a \in \mathbb{Z}$.
- (2) An integer n is odd if n = 2a + 1 for some $a \in \mathbb{Z}$.
- (3) A real number r is rational if r = a/b for some $a, b \in \mathbb{Z}$; it is irrational if there are no integers $a, b \in \mathbb{Z}$ with r = a/b.
- (4) Suppose $a, b \in \mathbb{Z}$. We write $a \mid b$ and say a divivides b if b = ka for some $k \in \mathbb{Z}$.
- (5) Suppose $a, b, n \in \mathbb{Z}$ and $n \geq 2$. We write $a \equiv b \pmod{n}$ and say a is equivalent to $b \mod (mod) n$ if $n \mid (a b)$.
- (6) The Cartesian product of A and B is $A \times B = \{(x, y) : x \in A, y \in B\}.$
- (7) The power set of A is $\mathcal{P}(A) = \{X : X \subseteq A\}$
- (8) We write $A \subseteq B$ and say A is a subset of B if $(x \in A) \Rightarrow (x \in B)$.
- (9) We write A = B and say A equals B if $A \subseteq B$ and $B \subseteq A$.

TECHNIQUES/CONCEPTS

- (1) Direct proof
- (2) Contrapositive proof
- (3) Proof by contradiction
- (4) If-and-only-if proof
- (5) Effective use of cases
- (6) Proof of existence statements
- (7) Mathematical induction (strong)
- (8) Disproof by counterexample (smallest)
- (9) De Morgan's laws
 - (a) $\sim (P \lor Q) = (\sim P) \land (\sim Q)$
 - (b) $\sim (P \land Q) = (\sim P) \lor (\sim Q)$